ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomprg Unicode version

Theorem addcomprg 6768
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
addcomprg  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  ( B  +P.  A ) )

Proof of Theorem addcomprg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 elprnql 6671 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
31, 2sylan 277 . . . . . . . 8  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
4 prop 6665 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
5 elprnql 6671 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
64, 5sylan 277 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
7 addcomnqg 6571 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  =  ( z  +Q  y ) )
87eqeq2d 2092 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( x  =  ( y  +Q  z )  <-> 
x  =  ( z  +Q  y ) ) )
96, 8sylan2 280 . . . . . . . . . . 11  |-  ( ( y  e.  Q.  /\  ( A  e.  P.  /\  z  e.  ( 1st `  A ) ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
109anassrs 392 . . . . . . . . . 10  |-  ( ( ( y  e.  Q.  /\  A  e.  P. )  /\  z  e.  ( 1st `  A ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
1110rexbidva 2365 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  A  e.  P. )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1211ancoms 264 . . . . . . . 8  |-  ( ( A  e.  P.  /\  y  e.  Q. )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
133, 12sylan2 280 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  y  e.  ( 1st `  B ) ) )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1413anassrs 392 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  y  e.  ( 1st `  B ) )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1514rexbidva 2365 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y
) ) )
16 rexcom 2518 . . . . 5  |-  ( E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A
) x  =  ( z  +Q  y )  <->  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) )
1715, 16syl6bb 194 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) ) )
1817rabbidv 2593 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( y  +Q  z ) }  =  { x  e. 
Q.  |  E. z  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) x  =  ( z  +Q  y ) } )
19 elprnqu 6672 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
201, 19sylan 277 . . . . . . . 8  |-  ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
21 elprnqu 6672 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
z  e.  Q. )
224, 21sylan 277 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
z  e.  Q. )
2322, 8sylan2 280 . . . . . . . . . . 11  |-  ( ( y  e.  Q.  /\  ( A  e.  P.  /\  z  e.  ( 2nd `  A ) ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
2423anassrs 392 . . . . . . . . . 10  |-  ( ( ( y  e.  Q.  /\  A  e.  P. )  /\  z  e.  ( 2nd `  A ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
2524rexbidva 2365 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  A  e.  P. )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2625ancoms 264 . . . . . . . 8  |-  ( ( A  e.  P.  /\  y  e.  Q. )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2720, 26sylan2 280 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  y  e.  ( 2nd `  B ) ) )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2827anassrs 392 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  y  e.  ( 2nd `  B ) )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2928rexbidva 2365 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y
) ) )
30 rexcom 2518 . . . . 5  |-  ( E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A
) x  =  ( z  +Q  y )  <->  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) )
3129, 30syl6bb 194 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) ) )
3231rabbidv 2593 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A ) x  =  ( y  +Q  z ) }  =  { x  e. 
Q.  |  E. z  e.  ( 2nd `  A
) E. y  e.  ( 2nd `  B
) x  =  ( z  +Q  y ) } )
3318, 32opeq12d 3578 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. { x  e.  Q.  |  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( y  +Q  z ) } ,  { x  e. 
Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >.  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) } ,  {
x  e.  Q.  |  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) } >. )
34 plpvlu 6728 . . 3  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  +P.  A
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >. )
3534ancoms 264 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  +P.  A
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >. )
36 plpvlu 6728 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) x  =  ( z  +Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  A
) E. y  e.  ( 2nd `  B
) x  =  ( z  +Q  y ) } >. )
3733, 35, 363eqtr4rd 2124 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  ( B  +P.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E.wrex 2349   {crab 2352   <.cop 3401   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    +Q cplq 6472   P.cnp 6481    +P. cpp 6483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-plpq 6534  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-inp 6656  df-iplp 6658
This theorem is referenced by:  prplnqu  6810  addextpr  6811  caucvgprlemcanl  6834  caucvgprprlemnkltj  6879  caucvgprprlemnbj  6883  caucvgprprlemmu  6885  caucvgprprlemloc  6893  caucvgprprlemexbt  6896  caucvgprprlemexb  6897  caucvgprprlemaddq  6898  enrer  6912  addcmpblnr  6916  mulcmpblnrlemg  6917  ltsrprg  6924  addcomsrg  6932  mulcomsrg  6934  mulasssrg  6935  distrsrg  6936  lttrsr  6939  ltposr  6940  ltsosr  6941  0lt1sr  6942  0idsr  6944  1idsr  6945  ltasrg  6947  recexgt0sr  6950  mulgt0sr  6954  aptisr  6955  mulextsr1lem  6956  archsr  6958  srpospr  6959  prsrpos  6961  prsradd  6962  prsrlt  6963  pitonnlem1p1  7014  pitoregt0  7017  recidpirqlemcalc  7025
  Copyright terms: Public domain W3C validator