ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 Unicode version

Theorem climshft2 10145
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1  |-  Z  =  ( ZZ>= `  M )
climshft2.2  |-  ( ph  ->  M  e.  ZZ )
climshft2.3  |-  ( ph  ->  K  e.  ZZ )
climshft2.5  |-  ( ph  ->  F  e.  W )
climshft2.6  |-  ( ph  ->  G  e.  X )
climshft2.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
) )
Assertion
Ref Expression
climshft2  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    k, F    k, G    k, K    k, M    ph, k    k, Z    A, k
Allowed substitution hints:    W( k)    X( k)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climshft2.6 . . . 4  |-  ( ph  ->  G  e.  X )
3 climshft2.3 . . . . . 6  |-  ( ph  ->  K  e.  ZZ )
43zcnd 8470 . . . . 5  |-  ( ph  ->  K  e.  CC )
54negcld 7406 . . . 4  |-  ( ph  -> 
-u K  e.  CC )
6 ovshftex 9707 . . . 4  |-  ( ( G  e.  X  /\  -u K  e.  CC )  ->  ( G  shift  -u K )  e.  _V )
72, 5, 6syl2anc 403 . . 3  |-  ( ph  ->  ( G  shift  -u K
)  e.  _V )
8 climshft2.5 . . 3  |-  ( ph  ->  F  e.  W )
9 climshft2.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
10 funi 4952 . . . . . . . 8  |-  Fun  _I
11 elex 2610 . . . . . . . . . 10  |-  ( G  e.  X  ->  G  e.  _V )
122, 11syl 14 . . . . . . . . 9  |-  ( ph  ->  G  e.  _V )
13 dmi 4568 . . . . . . . . 9  |-  dom  _I  =  _V
1412, 13syl6eleqr 2172 . . . . . . . 8  |-  ( ph  ->  G  e.  dom  _I  )
15 funfvex 5212 . . . . . . . 8  |-  ( ( Fun  _I  /\  G  e.  dom  _I  )  -> 
(  _I  `  G
)  e.  _V )
1610, 14, 15sylancr 405 . . . . . . 7  |-  ( ph  ->  (  _I  `  G
)  e.  _V )
1716adantr 270 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (  _I  `  G )  e. 
_V )
184adantr 270 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  CC )
19 eluzelz 8628 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
2019, 1eleq2s 2173 . . . . . . . 8  |-  ( k  e.  Z  ->  k  e.  ZZ )
2120zcnd 8470 . . . . . . 7  |-  ( k  e.  Z  ->  k  e.  CC )
2221adantl 271 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  CC )
23 shftval4g 9725 . . . . . 6  |-  ( ( (  _I  `  G
)  e.  _V  /\  K  e.  CC  /\  k  e.  CC )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( (  _I 
`  G ) `  ( K  +  k
) ) )
2417, 18, 22, 23syl3anc 1169 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( (  _I 
`  G ) `  ( K  +  k
) ) )
25 fvi 5251 . . . . . . . . 9  |-  ( G  e.  X  ->  (  _I  `  G )  =  G )
262, 25syl 14 . . . . . . . 8  |-  ( ph  ->  (  _I  `  G
)  =  G )
2726adantr 270 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (  _I  `  G )  =  G )
2827oveq1d 5547 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
(  _I  `  G
)  shift  -u K )  =  ( G  shift  -u K
) )
2928fveq1d 5200 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( ( G 
shift  -u K ) `  k ) )
30 addcom 7245 . . . . . . 7  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
314, 21, 30syl2an 283 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
3227, 31fveq12d 5204 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
(  _I  `  G
) `  ( K  +  k ) )  =  ( G `  ( k  +  K
) ) )
3324, 29, 323eqtr3d 2121 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G  shift  -u K
) `  k )  =  ( G `  ( k  +  K
) ) )
34 climshft2.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
) )
3533, 34eqtrd 2113 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G  shift  -u K
) `  k )  =  ( F `  k ) )
361, 7, 8, 9, 35climeq 10138 . 2  |-  ( ph  ->  ( ( G  shift  -u K )  ~~>  A  <->  F  ~~>  A ) )
373znegcld 8471 . . 3  |-  ( ph  -> 
-u K  e.  ZZ )
38 climshft 10143 . . 3  |-  ( (
-u K  e.  ZZ  /\  G  e.  X )  ->  ( ( G 
shift  -u K )  ~~>  A  <->  G  ~~>  A ) )
3937, 2, 38syl2anc 403 . 2  |-  ( ph  ->  ( ( G  shift  -u K )  ~~>  A  <->  G  ~~>  A ) )
4036, 39bitr3d 188 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   class class class wbr 3785    _I cid 4043   dom cdm 4363   Fun wfun 4916   ` cfv 4922  (class class class)co 5532   CCcc 6979    + caddc 6984   -ucneg 7280   ZZcz 8351   ZZ>=cuz 8619    shift cshi 9702    ~~> cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-shft 9703  df-clim 10118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator