ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  readdcan Unicode version

Theorem readdcan 7248
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
readdcan  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  <->  A  =  B ) )

Proof of Theorem readdcan
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7085 . . . 4  |-  ( C  e.  RR  ->  E. x  e.  RR  ( C  +  x )  =  0 )
213ad2ant3 961 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( C  +  x )  =  0 )
3 oveq2 5540 . . . . . . 7  |-  ( ( C  +  A )  =  ( C  +  B )  ->  (
x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B
) ) )
43adantl 271 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B
) ) )
5 simprl 497 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  RR )
65recnd 7147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
7 simpl3 943 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  RR )
87recnd 7147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
9 simpl1 941 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  RR )
109recnd 7147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
116, 8, 10addassd 7141 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  ( x  +  ( C  +  A ) ) )
12 simpl2 942 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  RR )
1312recnd 7147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
146, 8, 13addassd 7141 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  ( x  +  ( C  +  B ) ) )
1511, 14eqeq12d 2095 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( x  +  C
)  +  A )  =  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B ) ) ) )
1615adantr 270 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( ( x  +  C )  +  A
)  =  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B ) ) ) )
174, 16mpbird 165 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  ( ( x  +  C )  +  B ) )
188adantr 270 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  C  e.  CC )
196adantr 270 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  x  e.  CC )
20 addcom 7245 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  x  e.  CC )  ->  ( C  +  x
)  =  ( x  +  C ) )
2118, 19, 20syl2anc 403 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  ( C  +  x )  =  ( x  +  C ) )
22 simplrr 502 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  ( C  +  x )  =  0 )
2321, 22eqtr3d 2115 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
x  +  C )  =  0 )
2423oveq1d 5547 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  ( 0  +  A ) )
2510adantr 270 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  A  e.  CC )
26 addid2 7247 . . . . . . 7  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
2725, 26syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
0  +  A )  =  A )
2824, 27eqtrd 2113 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  A )
2923oveq1d 5547 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  B )  =  ( 0  +  B ) )
3013adantr 270 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  B  e.  CC )
31 addid2 7247 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  +  B )  =  B )
3230, 31syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
0  +  B )  =  B )
3329, 32eqtrd 2113 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  B )  =  B )
3417, 28, 333eqtr3d 2121 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  A  =  B )
3534ex 113 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  =  ( C  +  B )  ->  A  =  B ) )
362, 35rexlimddv 2481 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  ->  A  =  B )
)
37 oveq2 5540 . 2  |-  ( A  =  B  ->  ( C  +  A )  =  ( C  +  B ) )
3836, 37impbid1 140 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981    + caddc 6984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator