| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addnqpru | Unicode version | ||
| Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
| Ref | Expression |
|---|---|
| addnqpru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 6665 |
. . . . . 6
| |
| 2 | addnqprulem 6718 |
. . . . . 6
| |
| 3 | 1, 2 | sylanl1 394 |
. . . . 5
|
| 4 | 3 | adantlr 460 |
. . . 4
|
| 5 | prop 6665 |
. . . . . 6
| |
| 6 | addnqprulem 6718 |
. . . . . 6
| |
| 7 | 5, 6 | sylanl1 394 |
. . . . 5
|
| 8 | 7 | adantll 459 |
. . . 4
|
| 9 | 4, 8 | jcad 301 |
. . 3
|
| 10 | simpl 107 |
. . . 4
| |
| 11 | simpl 107 |
. . . . 5
| |
| 12 | simpl 107 |
. . . . 5
| |
| 13 | 11, 12 | anim12i 331 |
. . . 4
|
| 14 | df-iplp 6658 |
. . . . 5
| |
| 15 | addclnq 6565 |
. . . . 5
| |
| 16 | 14, 15 | genppreclu 6705 |
. . . 4
|
| 17 | 10, 13, 16 | 3syl 17 |
. . 3
|
| 18 | 9, 17 | syld 44 |
. 2
|
| 19 | simpr 108 |
. . . . 5
| |
| 20 | elprnqu 6672 |
. . . . . . . . 9
| |
| 21 | 1, 20 | sylan 277 |
. . . . . . . 8
|
| 22 | 21 | ad2antrr 471 |
. . . . . . 7
|
| 23 | elprnqu 6672 |
. . . . . . . . 9
| |
| 24 | 5, 23 | sylan 277 |
. . . . . . . 8
|
| 25 | 24 | ad2antlr 472 |
. . . . . . 7
|
| 26 | addclnq 6565 |
. . . . . . 7
| |
| 27 | 22, 25, 26 | syl2anc 403 |
. . . . . 6
|
| 28 | recclnq 6582 |
. . . . . 6
| |
| 29 | 27, 28 | syl 14 |
. . . . 5
|
| 30 | mulassnqg 6574 |
. . . . 5
| |
| 31 | 19, 29, 27, 30 | syl3anc 1169 |
. . . 4
|
| 32 | mulclnq 6566 |
. . . . . 6
| |
| 33 | 19, 29, 32 | syl2anc 403 |
. . . . 5
|
| 34 | distrnqg 6577 |
. . . . 5
| |
| 35 | 33, 22, 25, 34 | syl3anc 1169 |
. . . 4
|
| 36 | mulcomnqg 6573 |
. . . . . . . 8
| |
| 37 | 29, 27, 36 | syl2anc 403 |
. . . . . . 7
|
| 38 | recidnq 6583 |
. . . . . . . 8
| |
| 39 | 27, 38 | syl 14 |
. . . . . . 7
|
| 40 | 37, 39 | eqtrd 2113 |
. . . . . 6
|
| 41 | 40 | oveq2d 5548 |
. . . . 5
|
| 42 | mulidnq 6579 |
. . . . . 6
| |
| 43 | 42 | adantl 271 |
. . . . 5
|
| 44 | 41, 43 | eqtrd 2113 |
. . . 4
|
| 45 | 31, 35, 44 | 3eqtr3d 2121 |
. . 3
|
| 46 | 45 | eleq1d 2147 |
. 2
|
| 47 | 18, 46 | sylibd 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-inp 6656 df-iplp 6658 |
| This theorem is referenced by: addlocprlemeq 6723 addlocprlemgt 6724 addclpr 6727 |
| Copyright terms: Public domain | W3C validator |