ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprulem Unicode version

Theorem addnqprulem 6718
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprulem  |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  ->  ( S  <Q  X  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )

Proof of Theorem addnqprulem
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  S  <Q  X )
2 ltrnqi 6611 . . . . . 6  |-  ( S 
<Q  X  ->  ( *Q
`  X )  <Q 
( *Q `  S
) )
3 simplr 496 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  X  e.  Q. )
4 recclnq 6582 . . . . . . . . 9  |-  ( X  e.  Q.  ->  ( *Q `  X )  e. 
Q. )
53, 4syl 14 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( *Q `  X )  e.  Q. )
6 ltrelnq 6555 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4410 . . . . . . . . . . 11  |-  ( S 
<Q  X  ->  ( S  e.  Q.  /\  X  e.  Q. ) )
87adantl 271 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( S  e. 
Q.  /\  X  e.  Q. ) )
98simpld 110 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  S  e.  Q. )
10 recclnq 6582 . . . . . . . . 9  |-  ( S  e.  Q.  ->  ( *Q `  S )  e. 
Q. )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( *Q `  S )  e.  Q. )
12 ltmnqg 6591 . . . . . . . 8  |-  ( ( ( *Q `  X
)  e.  Q.  /\  ( *Q `  S )  e.  Q.  /\  X  e.  Q. )  ->  (
( *Q `  X
)  <Q  ( *Q `  S )  <->  ( X  .Q  ( *Q `  X
) )  <Q  ( X  .Q  ( *Q `  S ) ) ) )
135, 11, 3, 12syl3anc 1169 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( *Q
`  X )  <Q 
( *Q `  S
)  <->  ( X  .Q  ( *Q `  X ) )  <Q  ( X  .Q  ( *Q `  S
) ) ) )
14 ltmnqg 6591 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
1514adantl 271 . . . . . . . 8  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  /\  (
y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. ) )  -> 
( y  <Q  z  <->  ( w  .Q  y ) 
<Q  ( w  .Q  z
) ) )
16 mulclnq 6566 . . . . . . . . 9  |-  ( ( X  e.  Q.  /\  ( *Q `  X )  e.  Q. )  -> 
( X  .Q  ( *Q `  X ) )  e.  Q. )
173, 5, 16syl2anc 403 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( X  .Q  ( *Q `  X ) )  e.  Q. )
18 mulclnq 6566 . . . . . . . . 9  |-  ( ( X  e.  Q.  /\  ( *Q `  S )  e.  Q. )  -> 
( X  .Q  ( *Q `  S ) )  e.  Q. )
193, 11, 18syl2anc 403 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( X  .Q  ( *Q `  S ) )  e.  Q. )
20 elprnqu 6672 . . . . . . . . 9  |-  ( (
<. L ,  U >.  e. 
P.  /\  G  e.  U )  ->  G  e.  Q. )
2120ad2antrr 471 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  G  e.  Q. )
22 mulcomnqg 6573 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
2322adantl 271 . . . . . . . 8  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  /\  (
y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
2415, 17, 19, 21, 23caovord2d 5690 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  X ) )  <Q 
( X  .Q  ( *Q `  S ) )  <-> 
( ( X  .Q  ( *Q `  X ) )  .Q  G ) 
<Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
2513, 24bitrd 186 . . . . . 6  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( *Q
`  X )  <Q 
( *Q `  S
)  <->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
262, 25syl5ib 152 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( S  <Q  X  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
271, 26mpd 13 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) )
28 recidnq 6583 . . . . . . . 8  |-  ( X  e.  Q.  ->  ( X  .Q  ( *Q `  X ) )  =  1Q )
2928oveq1d 5547 . . . . . . 7  |-  ( X  e.  Q.  ->  (
( X  .Q  ( *Q `  X ) )  .Q  G )  =  ( 1Q  .Q  G
) )
30 1nq 6556 . . . . . . . . 9  |-  1Q  e.  Q.
31 mulcomnqg 6573 . . . . . . . . 9  |-  ( ( 1Q  e.  Q.  /\  G  e.  Q. )  ->  ( 1Q  .Q  G
)  =  ( G  .Q  1Q ) )
3230, 31mpan 414 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( 1Q  .Q  G )  =  ( G  .Q  1Q ) )
33 mulidnq 6579 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( G  .Q  1Q )  =  G )
3432, 33eqtrd 2113 . . . . . . 7  |-  ( G  e.  Q.  ->  ( 1Q  .Q  G )  =  G )
3529, 34sylan9eqr 2135 . . . . . 6  |-  ( ( G  e.  Q.  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  =  G )
3635breq1d 3795 . . . . 5  |-  ( ( G  e.  Q.  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G )  <->  G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
3721, 3, 36syl2anc 403 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( ( X  .Q  ( *Q
`  X ) )  .Q  G )  <Q 
( ( X  .Q  ( *Q `  S ) )  .Q  G )  <-> 
G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
3827, 37mpbid 145 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  G  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) )
39 prcunqu 6675 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  G  e.  U )  ->  ( G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
4039ad2antrr 471 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  -> 
( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
4138, 40mpd 13 . 2  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U
)
4241ex 113 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  ->  ( S  <Q  X  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   Q.cnq 6470   1Qc1q 6471    .Q cmq 6473   *Qcrq 6474    <Q cltq 6475   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656
This theorem is referenced by:  addnqpru  6720
  Copyright terms: Public domain W3C validator