ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgb Unicode version

Theorem algcvgb 10432
Description: Two ways of expressing that  C is a countdown function for algorithm  F. The first is used in these theorems. The second states the condition more intuitively as a conjunction: if the countdown function's value is currently nonzero, it must decrease at the next step; if it has reached zero, it must remain zero at the next step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
algcvgb.1  |-  F : S
--> S
algcvgb.2  |-  C : S
--> NN0
Assertion
Ref Expression
algcvgb  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )

Proof of Theorem algcvgb
StepHypRef Expression
1 algcvgb.2 . . 3  |-  C : S
--> NN0
21ffvelrni 5322 . 2  |-  ( X  e.  S  ->  ( C `  X )  e.  NN0 )
3 algcvgb.1 . . . 4  |-  F : S
--> S
43ffvelrni 5322 . . 3  |-  ( X  e.  S  ->  ( F `  X )  e.  S )
51ffvelrni 5322 . . 3  |-  ( ( F `  X )  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
64, 5syl 14 . 2  |-  ( X  e.  S  ->  ( C `  ( F `  X ) )  e. 
NN0 )
7 algcvgblem 10431 . 2  |-  ( ( ( C `  X
)  e.  NN0  /\  ( C `  ( F `
 X ) )  e.  NN0 )  -> 
( ( ( C `
 ( F `  X ) )  =/=  0  ->  ( C `  ( F `  X
) )  <  ( C `  X )
)  <->  ( ( ( C `  X )  =/=  0  ->  ( C `  ( F `  X ) )  < 
( C `  X
) )  /\  (
( C `  X
)  =  0  -> 
( C `  ( F `  X )
)  =  0 ) ) ) )
82, 6, 7syl2anc 403 1  |-  ( X  e.  S  ->  (
( ( C `  ( F `  X ) )  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  <->  ( (
( C `  X
)  =/=  0  -> 
( C `  ( F `  X )
)  <  ( C `  X ) )  /\  ( ( C `  X )  =  0  ->  ( C `  ( F `  X ) )  =  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   -->wf 4918   ` cfv 4922   0cc0 6981    < clt 7153   NN0cn0 8288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  ialgcvga  10433
  Copyright terms: Public domain W3C validator