| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algcvgblem | Unicode version | ||
| Description: Lemma for algcvgb 10432. (Contributed by Paul Chapman, 31-Mar-2011.) |
| Ref | Expression |
|---|---|
| algcvgblem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 8371 |
. . . . . . . . 9
| |
| 2 | 0z 8362 |
. . . . . . . . 9
| |
| 3 | zdceq 8423 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | sylancl 404 |
. . . . . . . 8
|
| 5 | 4 | dcned 2251 |
. . . . . . 7
|
| 6 | imordc 829 |
. . . . . . 7
| |
| 7 | 5, 6 | syl 14 |
. . . . . 6
|
| 8 | 7 | adantl 271 |
. . . . 5
|
| 9 | nn0z 8371 |
. . . . . . . . . . . . . 14
| |
| 10 | zltnle 8397 |
. . . . . . . . . . . . . 14
| |
| 11 | 2, 9, 10 | sylancr 405 |
. . . . . . . . . . . . 13
|
| 12 | 11 | adantr 270 |
. . . . . . . . . . . 12
|
| 13 | nn0le0eq0 8316 |
. . . . . . . . . . . . . 14
| |
| 14 | 13 | notbid 624 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantr 270 |
. . . . . . . . . . . 12
|
| 16 | 12, 15 | bitrd 186 |
. . . . . . . . . . 11
|
| 17 | df-ne 2246 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | syl6bbr 196 |
. . . . . . . . . 10
|
| 19 | 18 | anbi2d 451 |
. . . . . . . . 9
|
| 20 | 1 | adantl 271 |
. . . . . . . . . . . . . 14
|
| 21 | 20, 2, 3 | sylancl 404 |
. . . . . . . . . . . . 13
|
| 22 | nnedc 2250 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | syl 14 |
. . . . . . . . . . . 12
|
| 24 | breq1 3788 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | syl6bi 161 |
. . . . . . . . . . 11
|
| 26 | bi2 128 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | syl6 33 |
. . . . . . . . . 10
|
| 28 | 27 | impd 251 |
. . . . . . . . 9
|
| 29 | 19, 28 | sylbird 168 |
. . . . . . . 8
|
| 30 | 29 | expd 254 |
. . . . . . 7
|
| 31 | ax-1 5 |
. . . . . . 7
| |
| 32 | 30, 31 | jctir 306 |
. . . . . 6
|
| 33 | jaob 663 |
. . . . . 6
| |
| 34 | 32, 33 | sylibr 132 |
. . . . 5
|
| 35 | 8, 34 | sylbid 148 |
. . . 4
|
| 36 | nn0ge0 8313 |
. . . . . . . 8
| |
| 37 | 36 | adantl 271 |
. . . . . . 7
|
| 38 | nn0re 8297 |
. . . . . . . 8
| |
| 39 | nn0re 8297 |
. . . . . . . 8
| |
| 40 | 0re 7119 |
. . . . . . . . 9
| |
| 41 | lelttr 7199 |
. . . . . . . . 9
| |
| 42 | 40, 41 | mp3an1 1255 |
. . . . . . . 8
|
| 43 | 38, 39, 42 | syl2anr 284 |
. . . . . . 7
|
| 44 | 37, 43 | mpand 419 |
. . . . . 6
|
| 45 | 44, 18 | sylibd 147 |
. . . . 5
|
| 46 | 45 | imim2d 53 |
. . . 4
|
| 47 | 35, 46 | jcad 301 |
. . 3
|
| 48 | pm3.34 338 |
. . 3
| |
| 49 | 47, 48 | impbid1 140 |
. 2
|
| 50 | con34bdc 798 |
. . . . 5
| |
| 51 | 21, 50 | syl 14 |
. . . 4
|
| 52 | df-ne 2246 |
. . . . 5
| |
| 53 | 52, 17 | imbi12i 237 |
. . . 4
|
| 54 | 51, 53 | syl6bbr 196 |
. . 3
|
| 55 | 54 | anbi2d 451 |
. 2
|
| 56 | 49, 55 | bitr4d 189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 |
| This theorem is referenced by: algcvgb 10432 |
| Copyright terms: Public domain | W3C validator |