ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgblem Unicode version

Theorem algcvgblem 10431
Description: Lemma for algcvgb 10432. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) ) ) )

Proof of Theorem algcvgblem
StepHypRef Expression
1 nn0z 8371 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2 0z 8362 . . . . . . . . 9  |-  0  e.  ZZ
3 zdceq 8423 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
41, 2, 3sylancl 404 . . . . . . . 8  |-  ( N  e.  NN0  -> DECID  N  =  0
)
54dcned 2251 . . . . . . 7  |-  ( N  e.  NN0  -> DECID  N  =/=  0
)
6 imordc 829 . . . . . . 7  |-  (DECID  N  =/=  0  ->  ( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
75, 6syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
87adantl 271 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
9 nn0z 8371 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  M  e.  ZZ )
10 zltnle 8397 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <  M  <->  -.  M  <_  0 ) )
112, 9, 10sylancr 405 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  ( 0  <  M  <->  -.  M  <_  0 ) )
1211adantr 270 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  -.  M  <_  0 ) )
13 nn0le0eq0 8316 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( M  <_  0  <->  M  = 
0 ) )
1413notbid 624 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  ( -.  M  <_  0  <->  -.  M  =  0 ) )
1514adantr 270 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  M  <_ 
0  <->  -.  M  = 
0 ) )
1612, 15bitrd 186 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  -.  M  =  0 ) )
17 df-ne 2246 . . . . . . . . . . 11  |-  ( M  =/=  0  <->  -.  M  =  0 )
1816, 17syl6bbr 196 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  M  =/=  0 ) )
1918anbi2d 451 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  0  <  M )  <->  ( -.  N  =/=  0  /\  M  =/=  0 ) ) )
201adantl 271 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
2120, 2, 3sylancl 404 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> DECID  N  =  0 )
22 nnedc 2250 . . . . . . . . . . . . 13  |-  (DECID  N  =  0  ->  ( -.  N  =/=  0  <->  N  = 
0 ) )
2321, 22syl 14 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  <->  N  =  0
) )
24 breq1 3788 . . . . . . . . . . . 12  |-  ( N  =  0  ->  ( N  <  M  <->  0  <  M ) )
2523, 24syl6bi 161 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( N  <  M  <->  0  <  M
) ) )
26 bi2 128 . . . . . . . . . . 11  |-  ( ( N  <  M  <->  0  <  M )  ->  ( 0  <  M  ->  N  <  M ) )
2725, 26syl6 33 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( 0  <  M  ->  N  <  M ) ) )
2827impd 251 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  0  <  M )  ->  N  <  M ) )
2919, 28sylbird 168 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  M  =/=  0 )  ->  N  <  M ) )
3029expd 254 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  < 
M ) ) )
31 ax-1 5 . . . . . . 7  |-  ( N  <  M  ->  ( M  =/=  0  ->  N  <  M ) )
3230, 31jctir 306 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  <  M ) )  /\  ( N  <  M  -> 
( M  =/=  0  ->  N  <  M ) ) ) )
33 jaob 663 . . . . . 6  |-  ( ( ( -.  N  =/=  0  \/  N  < 
M )  ->  ( M  =/=  0  ->  N  <  M ) )  <->  ( ( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  <  M ) )  /\  ( N  <  M  ->  ( M  =/=  0  ->  N  <  M ) ) ) )
3432, 33sylibr 132 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  \/  N  <  M )  ->  ( M  =/=  0  ->  N  <  M ) ) )
358, 34sylbid 148 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( M  =/=  0  ->  N  < 
M ) ) )
36 nn0ge0 8313 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_  N )
3736adantl 271 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  N )
38 nn0re 8297 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  RR )
39 nn0re 8297 . . . . . . . 8  |-  ( M  e.  NN0  ->  M  e.  RR )
40 0re 7119 . . . . . . . . 9  |-  0  e.  RR
41 lelttr 7199 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <  M )  ->  0  <  M
) )
4240, 41mp3an1 1255 . . . . . . . 8  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( ( 0  <_  N  /\  N  <  M
)  ->  0  <  M ) )
4338, 39, 42syl2anr 284 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0  <_  N  /\  N  <  M
)  ->  0  <  M ) )
4437, 43mpand 419 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  M  ->  0  <  M ) )
4544, 18sylibd 147 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  M  ->  M  =/=  0 ) )
4645imim2d 53 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( N  =/=  0  ->  M  =/=  0 ) ) )
4735, 46jcad 301 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
48 pm3.34 338 . . 3  |-  ( ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) )  -> 
( N  =/=  0  ->  N  <  M ) )
4947, 48impbid1 140 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
50 con34bdc 798 . . . . 5  |-  (DECID  N  =  0  ->  ( ( M  =  0  ->  N  =  0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) ) )
5121, 50syl 14 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  =  0  ->  N  = 
0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) ) )
52 df-ne 2246 . . . . 5  |-  ( N  =/=  0  <->  -.  N  =  0 )
5352, 17imbi12i 237 . . . 4  |-  ( ( N  =/=  0  ->  M  =/=  0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) )
5451, 53syl6bbr 196 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  =  0  ->  N  = 
0 )  <->  ( N  =/=  0  ->  M  =/=  0 ) ) )
5554anbi2d 451 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) )  <-> 
( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
5649, 55bitr4d 189 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   RRcr 6980   0cc0 6981    < clt 7153    <_ cle 7154   NN0cn0 8288   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  algcvgb  10432
  Copyright terms: Public domain W3C validator