| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom2s | Unicode version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 |
|
| Ref | Expression |
|---|---|
| ancom2s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 261 |
. 2
| |
| 2 | an12s.1 |
. 2
| |
| 3 | 1, 2 | sylan2 280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem is referenced by: an42s 553 ordsuc 4306 xpexr2m 4782 f1elima 5433 f1imaeq 5435 isosolem 5483 caovlem2d 5713 2ndconst 5863 isotilem 6419 prarloclem4 6688 mulsub 7505 leltadd 7551 divmul24ap 7804 |
| Copyright terms: Public domain | W3C validator |