| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isosolem | Unicode version | ||
| Description: Lemma for isoso 5484. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| isosolem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isopolem 5481 |
. . 3
| |
| 2 | df-3an 921 |
. . . . . . 7
| |
| 3 | isof1o 5467 |
. . . . . . . . . . 11
| |
| 4 | f1of 5146 |
. . . . . . . . . . 11
| |
| 5 | ffvelrn 5321 |
. . . . . . . . . . . . 13
| |
| 6 | 5 | ex 113 |
. . . . . . . . . . . 12
|
| 7 | ffvelrn 5321 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | ex 113 |
. . . . . . . . . . . 12
|
| 9 | ffvelrn 5321 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | ex 113 |
. . . . . . . . . . . 12
|
| 11 | 6, 8, 10 | 3anim123d 1250 |
. . . . . . . . . . 11
|
| 12 | 3, 4, 11 | 3syl 17 |
. . . . . . . . . 10
|
| 13 | 12 | imp 122 |
. . . . . . . . 9
|
| 14 | breq1 3788 |
. . . . . . . . . . 11
| |
| 15 | breq1 3788 |
. . . . . . . . . . . 12
| |
| 16 | 15 | orbi1d 737 |
. . . . . . . . . . 11
|
| 17 | 14, 16 | imbi12d 232 |
. . . . . . . . . 10
|
| 18 | breq2 3789 |
. . . . . . . . . . 11
| |
| 19 | breq2 3789 |
. . . . . . . . . . . 12
| |
| 20 | 19 | orbi2d 736 |
. . . . . . . . . . 11
|
| 21 | 18, 20 | imbi12d 232 |
. . . . . . . . . 10
|
| 22 | breq2 3789 |
. . . . . . . . . . . 12
| |
| 23 | breq1 3788 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | orbi12d 739 |
. . . . . . . . . . 11
|
| 25 | 24 | imbi2d 228 |
. . . . . . . . . 10
|
| 26 | 17, 21, 25 | rspc3v 2716 |
. . . . . . . . 9
|
| 27 | 13, 26 | syl 14 |
. . . . . . . 8
|
| 28 | isorel 5468 |
. . . . . . . . . 10
| |
| 29 | 28 | 3adantr3 1099 |
. . . . . . . . 9
|
| 30 | isorel 5468 |
. . . . . . . . . . 11
| |
| 31 | 30 | 3adantr2 1098 |
. . . . . . . . . 10
|
| 32 | isorel 5468 |
. . . . . . . . . . . 12
| |
| 33 | 32 | ancom2s 530 |
. . . . . . . . . . 11
|
| 34 | 33 | 3adantr1 1097 |
. . . . . . . . . 10
|
| 35 | 31, 34 | orbi12d 739 |
. . . . . . . . 9
|
| 36 | 29, 35 | imbi12d 232 |
. . . . . . . 8
|
| 37 | 27, 36 | sylibrd 167 |
. . . . . . 7
|
| 38 | 2, 37 | sylan2br 282 |
. . . . . 6
|
| 39 | 38 | anassrs 392 |
. . . . 5
|
| 40 | 39 | ralrimdva 2441 |
. . . 4
|
| 41 | 40 | ralrimdvva 2446 |
. . 3
|
| 42 | 1, 41 | anim12d 328 |
. 2
|
| 43 | df-iso 4052 |
. 2
| |
| 44 | df-iso 4052 |
. 2
| |
| 45 | 42, 43, 44 | 3imtr4g 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-f1o 4929 df-fv 4930 df-isom 4931 |
| This theorem is referenced by: isoso 5484 |
| Copyright terms: Public domain | W3C validator |