ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isosolem Unicode version

Theorem isosolem 5483
Description: Lemma for isoso 5484. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isosolem  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )

Proof of Theorem isosolem
Dummy variables  a  b  c  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isopolem 5481 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Po  B  ->  R  Po  A
) )
2 df-3an 921 . . . . . . 7  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  <->  ( ( a  e.  A  /\  b  e.  A
)  /\  c  e.  A ) )
3 isof1o 5467 . . . . . . . . . . 11  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
4 f1of 5146 . . . . . . . . . . 11  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
5 ffvelrn 5321 . . . . . . . . . . . . 13  |-  ( ( H : A --> B  /\  a  e.  A )  ->  ( H `  a
)  e.  B )
65ex 113 . . . . . . . . . . . 12  |-  ( H : A --> B  -> 
( a  e.  A  ->  ( H `  a
)  e.  B ) )
7 ffvelrn 5321 . . . . . . . . . . . . 13  |-  ( ( H : A --> B  /\  b  e.  A )  ->  ( H `  b
)  e.  B )
87ex 113 . . . . . . . . . . . 12  |-  ( H : A --> B  -> 
( b  e.  A  ->  ( H `  b
)  e.  B ) )
9 ffvelrn 5321 . . . . . . . . . . . . 13  |-  ( ( H : A --> B  /\  c  e.  A )  ->  ( H `  c
)  e.  B )
109ex 113 . . . . . . . . . . . 12  |-  ( H : A --> B  -> 
( c  e.  A  ->  ( H `  c
)  e.  B ) )
116, 8, 103anim123d 1250 . . . . . . . . . . 11  |-  ( H : A --> B  -> 
( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  (
( H `  a
)  e.  B  /\  ( H `  b )  e.  B  /\  ( H `  c )  e.  B ) ) )
123, 4, 113syl 17 . . . . . . . . . 10  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  (
( H `  a
)  e.  B  /\  ( H `  b )  e.  B  /\  ( H `  c )  e.  B ) ) )
1312imp 122 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( ( H `  a )  e.  B  /\  ( H `  b )  e.  B  /\  ( H `  c )  e.  B ) )
14 breq1 3788 . . . . . . . . . . 11  |-  ( x  =  ( H `  a )  ->  (
x S y  <->  ( H `  a ) S y ) )
15 breq1 3788 . . . . . . . . . . . 12  |-  ( x  =  ( H `  a )  ->  (
x S z  <->  ( H `  a ) S z ) )
1615orbi1d 737 . . . . . . . . . . 11  |-  ( x  =  ( H `  a )  ->  (
( x S z  \/  z S y )  <->  ( ( H `
 a ) S z  \/  z S y ) ) )
1714, 16imbi12d 232 . . . . . . . . . 10  |-  ( x  =  ( H `  a )  ->  (
( x S y  ->  ( x S z  \/  z S y ) )  <->  ( ( H `  a ) S y  ->  (
( H `  a
) S z  \/  z S y ) ) ) )
18 breq2 3789 . . . . . . . . . . 11  |-  ( y  =  ( H `  b )  ->  (
( H `  a
) S y  <->  ( H `  a ) S ( H `  b ) ) )
19 breq2 3789 . . . . . . . . . . . 12  |-  ( y  =  ( H `  b )  ->  (
z S y  <->  z S
( H `  b
) ) )
2019orbi2d 736 . . . . . . . . . . 11  |-  ( y  =  ( H `  b )  ->  (
( ( H `  a ) S z  \/  z S y )  <->  ( ( H `
 a ) S z  \/  z S ( H `  b
) ) ) )
2118, 20imbi12d 232 . . . . . . . . . 10  |-  ( y  =  ( H `  b )  ->  (
( ( H `  a ) S y  ->  ( ( H `
 a ) S z  \/  z S y ) )  <->  ( ( H `  a ) S ( H `  b )  ->  (
( H `  a
) S z  \/  z S ( H `
 b ) ) ) ) )
22 breq2 3789 . . . . . . . . . . . 12  |-  ( z  =  ( H `  c )  ->  (
( H `  a
) S z  <->  ( H `  a ) S ( H `  c ) ) )
23 breq1 3788 . . . . . . . . . . . 12  |-  ( z  =  ( H `  c )  ->  (
z S ( H `
 b )  <->  ( H `  c ) S ( H `  b ) ) )
2422, 23orbi12d 739 . . . . . . . . . . 11  |-  ( z  =  ( H `  c )  ->  (
( ( H `  a ) S z  \/  z S ( H `  b ) )  <->  ( ( H `
 a ) S ( H `  c
)  \/  ( H `
 c ) S ( H `  b
) ) ) )
2524imbi2d 228 . . . . . . . . . 10  |-  ( z  =  ( H `  c )  ->  (
( ( H `  a ) S ( H `  b )  ->  ( ( H `
 a ) S z  \/  z S ( H `  b
) ) )  <->  ( ( H `  a ) S ( H `  b )  ->  (
( H `  a
) S ( H `
 c )  \/  ( H `  c
) S ( H `
 b ) ) ) ) )
2617, 21, 25rspc3v 2716 . . . . . . . . 9  |-  ( ( ( H `  a
)  e.  B  /\  ( H `  b )  e.  B  /\  ( H `  c )  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  ( x S z  \/  z S y ) )  -> 
( ( H `  a ) S ( H `  b )  ->  ( ( H `
 a ) S ( H `  c
)  \/  ( H `
 c ) S ( H `  b
) ) ) ) )
2713, 26syl 14 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x S y  -> 
( x S z  \/  z S y ) )  ->  (
( H `  a
) S ( H `
 b )  -> 
( ( H `  a ) S ( H `  c )  \/  ( H `  c ) S ( H `  b ) ) ) ) )
28 isorel 5468 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A )
)  ->  ( a R b  <->  ( H `  a ) S ( H `  b ) ) )
29283adantr3 1099 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( a R b  <->  ( H `  a ) S ( H `  b ) ) )
30 isorel 5468 . . . . . . . . . . 11  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  c  e.  A )
)  ->  ( a R c  <->  ( H `  a ) S ( H `  c ) ) )
31303adantr2 1098 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( a R c  <->  ( H `  a ) S ( H `  c ) ) )
32 isorel 5468 . . . . . . . . . . . 12  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  b  e.  A )
)  ->  ( c R b  <->  ( H `  c ) S ( H `  b ) ) )
3332ancom2s 530 . . . . . . . . . . 11  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
b  e.  A  /\  c  e.  A )
)  ->  ( c R b  <->  ( H `  c ) S ( H `  b ) ) )
34333adantr1 1097 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( c R b  <->  ( H `  c ) S ( H `  b ) ) )
3531, 34orbi12d 739 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( (
a R c  \/  c R b )  <-> 
( ( H `  a ) S ( H `  c )  \/  ( H `  c ) S ( H `  b ) ) ) )
3629, 35imbi12d 232 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( (
a R b  -> 
( a R c  \/  c R b ) )  <->  ( ( H `  a ) S ( H `  b )  ->  (
( H `  a
) S ( H `
 c )  \/  ( H `  c
) S ( H `
 b ) ) ) ) )
3727, 36sylibrd 167 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x S y  -> 
( x S z  \/  z S y ) )  ->  (
a R b  -> 
( a R c  \/  c R b ) ) ) )
382, 37sylan2br 282 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
( a  e.  A  /\  b  e.  A
)  /\  c  e.  A ) )  -> 
( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  ( x S z  \/  z S y ) )  ->  ( a R b  ->  ( a R c  \/  c R b ) ) ) )
3938anassrs 392 . . . . 5  |-  ( ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A )
)  /\  c  e.  A )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  ( x S z  \/  z S y ) )  -> 
( a R b  ->  ( a R c  \/  c R b ) ) ) )
4039ralrimdva 2441 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A )
)  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x S y  -> 
( x S z  \/  z S y ) )  ->  A. c  e.  A  ( a R b  ->  (
a R c  \/  c R b ) ) ) )
4140ralrimdvva 2446 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  (
x S z  \/  z S y ) )  ->  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  (
a R c  \/  c R b ) ) ) )
421, 41anim12d 328 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( ( S  Po  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x S y  -> 
( x S z  \/  z S y ) ) )  -> 
( R  Po  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) ) ) ) )
43 df-iso 4052 . 2  |-  ( S  Or  B  <->  ( S  Po  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  (
x S z  \/  z S y ) ) ) )
44 df-iso 4052 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  (
a R c  \/  c R b ) ) ) )
4542, 43, 443imtr4g 203 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   class class class wbr 3785    Po wpo 4049    Or wor 4050   -->wf 4918   -1-1-onto->wf1o 4921   ` cfv 4922    Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by:  isoso  5484
  Copyright terms: Public domain W3C validator