| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsuc | Unicode version | ||
| Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| ordsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucim 4244 |
. 2
| |
| 2 | en2lp 4297 |
. . . . . . . . . 10
| |
| 3 | eleq1 2141 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | biimpac 292 |
. . . . . . . . . . . 12
|
| 5 | 4 | anim2i 334 |
. . . . . . . . . . 11
|
| 6 | 5 | expr 367 |
. . . . . . . . . 10
|
| 7 | 2, 6 | mtoi 622 |
. . . . . . . . 9
|
| 8 | 7 | adantl 271 |
. . . . . . . 8
|
| 9 | elelsuc 4164 |
. . . . . . . . . . . . . . 15
| |
| 10 | 9 | adantr 270 |
. . . . . . . . . . . . . 14
|
| 11 | ordelss 4134 |
. . . . . . . . . . . . . 14
| |
| 12 | 10, 11 | sylan2 280 |
. . . . . . . . . . . . 13
|
| 13 | 12 | sseld 2998 |
. . . . . . . . . . . 12
|
| 14 | 13 | expr 367 |
. . . . . . . . . . 11
|
| 15 | 14 | pm2.43d 49 |
. . . . . . . . . 10
|
| 16 | 15 | impr 371 |
. . . . . . . . 9
|
| 17 | elsuci 4158 |
. . . . . . . . 9
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . 8
|
| 19 | 8, 18 | ecased 1280 |
. . . . . . 7
|
| 20 | 19 | ancom2s 530 |
. . . . . 6
|
| 21 | 20 | ex 113 |
. . . . 5
|
| 22 | 21 | alrimivv 1796 |
. . . 4
|
| 23 | dftr2 3877 |
. . . 4
| |
| 24 | 22, 23 | sylibr 132 |
. . 3
|
| 25 | sssucid 4170 |
. . . 4
| |
| 26 | trssord 4135 |
. . . 4
| |
| 27 | 25, 26 | mp3an2 1256 |
. . 3
|
| 28 | 24, 27 | mpancom 413 |
. 2
|
| 29 | 1, 28 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-suc 4126 |
| This theorem is referenced by: nlimsucg 4309 ordpwsucss 4310 |
| Copyright terms: Public domain | W3C validator |