Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omssind Unicode version

Theorem bj-omssind 10730
Description:  om is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omssind  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )

Proof of Theorem bj-omssind
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nfcv 2219 . . 3  |-  F/_ x A
2 nfv 1461 . . 3  |-  F/ xInd  A
3 bj-indeq 10724 . . . 4  |-  ( x  =  A  ->  (Ind  x 
<-> Ind 
A ) )
43biimprd 156 . . 3  |-  ( x  =  A  ->  (Ind  A  -> Ind  x ) )
51, 2, 4bj-intabssel1 10600 . 2  |-  ( A  e.  V  ->  (Ind  A  ->  |^| { x  | Ind  x }  C_  A
) )
6 bj-dfom 10728 . . 3  |-  om  =  |^| { x  | Ind  x }
76sseq1i 3023 . 2  |-  ( om  C_  A  <->  |^| { x  | Ind  x }  C_  A
)
85, 7syl6ibr 160 1  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433   {cab 2067    C_ wss 2973   |^|cint 3636   omcom 4331  Ind wind 10721
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-in 2979  df-ss 2986  df-int 3637  df-iom 4332  df-bj-ind 10722
This theorem is referenced by:  bj-om  10732  peano5set  10735
  Copyright terms: Public domain W3C validator