| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bnd2 | Unicode version | ||
| Description: A variant of the
Boundedness Axiom bnd 3946 that picks a subset |
| Ref | Expression |
|---|---|
| bnd2.1 |
|
| Ref | Expression |
|---|---|
| bnd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 |
. . . 4
| |
| 2 | 1 | ralbii 2372 |
. . 3
|
| 3 | bnd2.1 |
. . . 4
| |
| 4 | raleq 2549 |
. . . . 5
| |
| 5 | raleq 2549 |
. . . . . 6
| |
| 6 | 5 | exbidv 1746 |
. . . . 5
|
| 7 | 4, 6 | imbi12d 232 |
. . . 4
|
| 8 | bnd 3946 |
. . . 4
| |
| 9 | 3, 7, 8 | vtocl 2653 |
. . 3
|
| 10 | 2, 9 | sylbi 119 |
. 2
|
| 11 | vex 2604 |
. . . . 5
| |
| 12 | 11 | inex1 3912 |
. . . 4
|
| 13 | inss2 3187 |
. . . . . . 7
| |
| 14 | sseq1 3020 |
. . . . . . 7
| |
| 15 | 13, 14 | mpbiri 166 |
. . . . . 6
|
| 16 | 15 | biantrurd 299 |
. . . . 5
|
| 17 | rexeq 2550 |
. . . . . . 7
| |
| 18 | elin 3155 |
. . . . . . . . . 10
| |
| 19 | 18 | anbi1i 445 |
. . . . . . . . 9
|
| 20 | anass 393 |
. . . . . . . . 9
| |
| 21 | 19, 20 | bitri 182 |
. . . . . . . 8
|
| 22 | 21 | rexbii2 2377 |
. . . . . . 7
|
| 23 | 17, 22 | syl6bb 194 |
. . . . . 6
|
| 24 | 23 | ralbidv 2368 |
. . . . 5
|
| 25 | 16, 24 | bitr3d 188 |
. . . 4
|
| 26 | 12, 25 | spcev 2692 |
. . 3
|
| 27 | 26 | exlimiv 1529 |
. 2
|
| 28 | 10, 27 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |