ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bndndx Unicode version

Theorem bndndx 8287
Description: A bounded real sequence  A (
k ) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
Assertion
Ref Expression
bndndx  |-  ( E. x  e.  RR  A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k
)
Distinct variable groups:    x, A    x, k
Allowed substitution hint:    A( k)

Proof of Theorem bndndx
StepHypRef Expression
1 arch 8285 . . . 4  |-  ( x  e.  RR  ->  E. k  e.  NN  x  <  k
)
2 nnre 8046 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  RR )
3 lelttr 7199 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  (
( A  <_  x  /\  x  <  k )  ->  A  <  k
) )
4 ltle 7198 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( A  <  k  ->  A  <_  k )
)
543adant2 957 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  ( A  <  k  ->  A  <_  k ) )
63, 5syld 44 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  (
( A  <_  x  /\  x  <  k )  ->  A  <_  k
) )
76exp5o 1157 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
x  e.  RR  ->  ( k  e.  RR  ->  ( A  <_  x  ->  ( x  <  k  ->  A  <_  k ) ) ) ) )
87com3l 80 . . . . . . . 8  |-  ( x  e.  RR  ->  (
k  e.  RR  ->  ( A  e.  RR  ->  ( A  <_  x  ->  ( x  <  k  ->  A  <_  k ) ) ) ) )
98imp4b 342 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  (
x  <  k  ->  A  <_  k ) ) )
109com23 77 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( x  <  k  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
112, 10sylan2 280 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( x  <  k  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
1211reximdva 2463 . . . 4  |-  ( x  e.  RR  ->  ( E. k  e.  NN  x  <  k  ->  E. k  e.  NN  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
131, 12mpd 13 . . 3  |-  ( x  e.  RR  ->  E. k  e.  NN  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) )
14 r19.35-1 2504 . . 3  |-  ( E. k  e.  NN  (
( A  e.  RR  /\  A  <_  x )  ->  A  <_  k )  ->  ( A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k
) )
1513, 14syl 14 . 2  |-  ( x  e.  RR  ->  ( A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k ) )
1615rexlimiv 2471 1  |-  ( E. x  e.  RR  A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    e. wcel 1433   A.wral 2348   E.wrex 2349   class class class wbr 3785   RRcr 6980    < clt 7153    <_ cle 7154   NNcn 8039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1re 7070  ax-addrcl 7073  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-inn 8040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator