![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltle | Unicode version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
ltle |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnsym 7197 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | lenlt 7187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylibrd 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 ax-pre-lttrn 7090 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 |
This theorem is referenced by: ltlei 7212 ltled 7228 ltleap 7730 lep1 7923 lem1 7925 letrp1 7926 ltmul12a 7938 bndndx 8287 nn0ge0 8313 zletric 8395 zlelttric 8396 zltnle 8397 zleloe 8398 zdcle 8424 uzind 8458 fnn0ind 8463 eluz2b2 8690 rpge0 8746 zltaddlt1le 9028 difelfznle 9146 elfzouz2 9170 elfzo0le 9194 fzosplitprm1 9243 fzostep1 9246 qletric 9253 qlelttric 9254 qltnle 9255 expgt1 9514 expnlbnd2 9598 faclbnd 9668 caucvgrelemcau 9866 resqrexlemdecn 9898 mulcn2 10151 nn0o 10307 |
Copyright terms: Public domain | W3C validator |