ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrecl Unicode version

Theorem nnrecl 8286
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
Assertion
Ref Expression
nnrecl  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n
)  <  A )
Distinct variable group:    A, n

Proof of Theorem nnrecl
StepHypRef Expression
1 simpl 107 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
2 gt0ap0 7725 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
31, 2rerecclapd 7919 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
4 arch 8285 . . 3  |-  ( ( 1  /  A )  e.  RR  ->  E. n  e.  NN  ( 1  /  A )  <  n
)
53, 4syl 14 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  A
)  <  n )
6 recgt0 7928 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
73, 6jca 300 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) ) )
8 nnre 8046 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  RR )
9 nngt0 8064 . . . . . 6  |-  ( n  e.  NN  ->  0  <  n )
108, 9jca 300 . . . . 5  |-  ( n  e.  NN  ->  (
n  e.  RR  /\  0  <  n ) )
11 ltrec 7961 . . . . 5  |-  ( ( ( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( 1  /  A )  <  n  <->  ( 1  /  n )  <  ( 1  / 
( 1  /  A
) ) ) )
127, 10, 11syl2an 283 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  A )  < 
n  <->  ( 1  /  n )  <  (
1  /  ( 1  /  A ) ) ) )
13 recn 7106 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
1413adantr 270 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
1514, 2recrecapd 7873 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  /  A ) )  =  A )
1615breq2d 3797 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  n )  <  (
1  /  ( 1  /  A ) )  <-> 
( 1  /  n
)  <  A )
)
1716adantr 270 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  n )  < 
( 1  /  (
1  /  A ) )  <->  ( 1  /  n )  <  A
) )
1812, 17bitrd 186 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  A )  < 
n  <->  ( 1  /  n )  <  A
) )
1918rexbidva 2365 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( E. n  e.  NN  ( 1  /  A )  <  n  <->  E. n  e.  NN  (
1  /  n )  <  A ) )
205, 19mpbid 145 1  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n
)  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    < clt 7153    / cdiv 7760   NNcn 8039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040
This theorem is referenced by:  qbtwnre  9265
  Copyright terms: Public domain W3C validator