| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeqd | Unicode version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 |
|
| nfeqd.2 |
|
| Ref | Expression |
|---|---|
| nfeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2075 |
. 2
| |
| 2 | nfv 1461 |
. . 3
| |
| 3 | nfeqd.1 |
. . . . 5
| |
| 4 | 3 | nfcrd 2232 |
. . . 4
|
| 5 | nfeqd.2 |
. . . . 5
| |
| 6 | 5 | nfcrd 2232 |
. . . 4
|
| 7 | 4, 6 | nfbid 1520 |
. . 3
|
| 8 | 2, 7 | nfald 1683 |
. 2
|
| 9 | 1, 8 | nfxfrd 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-nfc 2208 |
| This theorem is referenced by: nfeld 2234 nfned 2338 vtoclgft 2649 sbcralt 2890 sbcrext 2891 csbiebt 2942 dfnfc2 3619 eusvnfb 4204 eusv2i 4205 iota2df 4911 riota5f 5512 |
| Copyright terms: Public domain | W3C validator |