| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsoexmid | Unicode version | ||
| Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.) |
| Ref | Expression |
|---|---|
| ordsoexmid.1 |
|
| Ref | Expression |
|---|---|
| ordsoexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtriexmidlem 4263 |
. . . . 5
| |
| 2 | 1 | elexi 2611 |
. . . 4
|
| 3 | 2 | sucid 4172 |
. . 3
|
| 4 | 1 | onsuci 4260 |
. . . 4
|
| 5 | suc0 4166 |
. . . . 5
| |
| 6 | 0elon 4147 |
. . . . . 6
| |
| 7 | 6 | onsuci 4260 |
. . . . 5
|
| 8 | 5, 7 | eqeltrri 2152 |
. . . 4
|
| 9 | eleq1 2141 |
. . . . . . 7
| |
| 10 | 9 | 3anbi1d 1247 |
. . . . . 6
|
| 11 | eleq1 2141 |
. . . . . . 7
| |
| 12 | eleq1 2141 |
. . . . . . . 8
| |
| 13 | 12 | orbi1d 737 |
. . . . . . 7
|
| 14 | 11, 13 | imbi12d 232 |
. . . . . 6
|
| 15 | 10, 14 | imbi12d 232 |
. . . . 5
|
| 16 | 4 | elexi 2611 |
. . . . . 6
|
| 17 | eleq1 2141 |
. . . . . . . 8
| |
| 18 | 17 | 3anbi2d 1248 |
. . . . . . 7
|
| 19 | eleq2 2142 |
. . . . . . . 8
| |
| 20 | eleq2 2142 |
. . . . . . . . 9
| |
| 21 | 20 | orbi2d 736 |
. . . . . . . 8
|
| 22 | 19, 21 | imbi12d 232 |
. . . . . . 7
|
| 23 | 18, 22 | imbi12d 232 |
. . . . . 6
|
| 24 | p0ex 3959 |
. . . . . . 7
| |
| 25 | eleq1 2141 |
. . . . . . . . 9
| |
| 26 | 25 | 3anbi3d 1249 |
. . . . . . . 8
|
| 27 | eleq2 2142 |
. . . . . . . . . 10
| |
| 28 | eleq1 2141 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | orbi12d 739 |
. . . . . . . . 9
|
| 30 | 29 | imbi2d 228 |
. . . . . . . 8
|
| 31 | 26, 30 | imbi12d 232 |
. . . . . . 7
|
| 32 | ordsoexmid.1 |
. . . . . . . . . . 11
| |
| 33 | df-iso 4052 |
. . . . . . . . . . 11
| |
| 34 | 32, 33 | mpbi 143 |
. . . . . . . . . 10
|
| 35 | 34 | simpri 111 |
. . . . . . . . 9
|
| 36 | epel 4047 |
. . . . . . . . . . . 12
| |
| 37 | epel 4047 |
. . . . . . . . . . . . 13
| |
| 38 | epel 4047 |
. . . . . . . . . . . . 13
| |
| 39 | 37, 38 | orbi12i 713 |
. . . . . . . . . . . 12
|
| 40 | 36, 39 | imbi12i 237 |
. . . . . . . . . . 11
|
| 41 | 40 | 2ralbii 2374 |
. . . . . . . . . 10
|
| 42 | 41 | ralbii 2372 |
. . . . . . . . 9
|
| 43 | 35, 42 | mpbi 143 |
. . . . . . . 8
|
| 44 | 43 | rspec3 2451 |
. . . . . . 7
|
| 45 | 24, 31, 44 | vtocl 2653 |
. . . . . 6
|
| 46 | 16, 23, 45 | vtocl 2653 |
. . . . 5
|
| 47 | 2, 15, 46 | vtocl 2653 |
. . . 4
|
| 48 | 1, 4, 8, 47 | mp3an 1268 |
. . 3
|
| 49 | 2 | elsn 3414 |
. . . . 5
|
| 50 | ordtriexmidlem2 4264 |
. . . . 5
| |
| 51 | 49, 50 | sylbi 119 |
. . . 4
|
| 52 | elirr 4284 |
. . . . . . 7
| |
| 53 | elrabi 2746 |
. . . . . . 7
| |
| 54 | 52, 53 | mto 620 |
. . . . . 6
|
| 55 | elsuci 4158 |
. . . . . . 7
| |
| 56 | 55 | ord 675 |
. . . . . 6
|
| 57 | 54, 56 | mpi 15 |
. . . . 5
|
| 58 | 0ex 3905 |
. . . . . . 7
| |
| 59 | biidd 170 |
. . . . . . 7
| |
| 60 | 58, 59 | rabsnt 3467 |
. . . . . 6
|
| 61 | 60 | eqcoms 2084 |
. . . . 5
|
| 62 | 57, 61 | syl 14 |
. . . 4
|
| 63 | 51, 62 | orim12i 708 |
. . 3
|
| 64 | 3, 48, 63 | mp2b 8 |
. 2
|
| 65 | orcom 679 |
. 2
| |
| 66 | 64, 65 | mpbi 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-tr 3876 df-eprel 4044 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |