| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltsosr | Unicode version | ||
| Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltsosr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltposr 6940 |
. 2
| |
| 2 | df-nr 6904 |
. . . 4
| |
| 3 | breq1 3788 |
. . . . 5
| |
| 4 | breq1 3788 |
. . . . . 6
| |
| 5 | 4 | orbi1d 737 |
. . . . 5
|
| 6 | 3, 5 | imbi12d 232 |
. . . 4
|
| 7 | breq2 3789 |
. . . . 5
| |
| 8 | breq2 3789 |
. . . . . 6
| |
| 9 | 8 | orbi2d 736 |
. . . . 5
|
| 10 | 7, 9 | imbi12d 232 |
. . . 4
|
| 11 | breq2 3789 |
. . . . . 6
| |
| 12 | breq1 3788 |
. . . . . 6
| |
| 13 | 11, 12 | orbi12d 739 |
. . . . 5
|
| 14 | 13 | imbi2d 228 |
. . . 4
|
| 15 | simp1l 962 |
. . . . . . . . 9
| |
| 16 | simp3r 967 |
. . . . . . . . 9
| |
| 17 | addclpr 6727 |
. . . . . . . . 9
| |
| 18 | 15, 16, 17 | syl2anc 403 |
. . . . . . . 8
|
| 19 | simp2r 965 |
. . . . . . . 8
| |
| 20 | addclpr 6727 |
. . . . . . . 8
| |
| 21 | 18, 19, 20 | syl2anc 403 |
. . . . . . 7
|
| 22 | simp2l 964 |
. . . . . . . . 9
| |
| 23 | addclpr 6727 |
. . . . . . . . 9
| |
| 24 | 16, 22, 23 | syl2anc 403 |
. . . . . . . 8
|
| 25 | simp1r 963 |
. . . . . . . 8
| |
| 26 | addclpr 6727 |
. . . . . . . 8
| |
| 27 | 24, 25, 26 | syl2anc 403 |
. . . . . . 7
|
| 28 | simp3l 966 |
. . . . . . . . 9
| |
| 29 | addclpr 6727 |
. . . . . . . . 9
| |
| 30 | 25, 28, 29 | syl2anc 403 |
. . . . . . . 8
|
| 31 | addclpr 6727 |
. . . . . . . 8
| |
| 32 | 30, 19, 31 | syl2anc 403 |
. . . . . . 7
|
| 33 | ltsopr 6786 |
. . . . . . . 8
| |
| 34 | sowlin 4075 |
. . . . . . . 8
| |
| 35 | 33, 34 | mpan 414 |
. . . . . . 7
|
| 36 | 21, 27, 32, 35 | syl3anc 1169 |
. . . . . 6
|
| 37 | addclpr 6727 |
. . . . . . . . 9
| |
| 38 | 15, 19, 37 | syl2anc 403 |
. . . . . . . 8
|
| 39 | addclpr 6727 |
. . . . . . . . 9
| |
| 40 | 25, 22, 39 | syl2anc 403 |
. . . . . . . 8
|
| 41 | ltaprg 6809 |
. . . . . . . 8
| |
| 42 | 38, 40, 16, 41 | syl3anc 1169 |
. . . . . . 7
|
| 43 | addcomprg 6768 |
. . . . . . . . . . 11
| |
| 44 | 43 | adantl 271 |
. . . . . . . . . 10
|
| 45 | addassprg 6769 |
. . . . . . . . . . 11
| |
| 46 | 45 | adantl 271 |
. . . . . . . . . 10
|
| 47 | 16, 15, 19, 44, 46 | caov12d 5702 |
. . . . . . . . 9
|
| 48 | 46, 15, 16, 19 | caovassd 5680 |
. . . . . . . . 9
|
| 49 | 47, 48 | eqtr4d 2116 |
. . . . . . . 8
|
| 50 | 46, 16, 25, 22 | caovassd 5680 |
. . . . . . . . 9
|
| 51 | 16, 25, 22, 44, 46 | caov32d 5701 |
. . . . . . . . 9
|
| 52 | 50, 51 | eqtr3d 2115 |
. . . . . . . 8
|
| 53 | 49, 52 | breq12d 3798 |
. . . . . . 7
|
| 54 | 42, 53 | bitrd 186 |
. . . . . 6
|
| 55 | ltaprg 6809 |
. . . . . . . . 9
| |
| 56 | 55 | adantl 271 |
. . . . . . . 8
|
| 57 | 56, 18, 30, 19, 44 | caovord2d 5690 |
. . . . . . 7
|
| 58 | addclpr 6727 |
. . . . . . . . . 10
| |
| 59 | 28, 19, 58 | syl2anc 403 |
. . . . . . . . 9
|
| 60 | 56, 59, 24, 25, 44 | caovord2d 5690 |
. . . . . . . 8
|
| 61 | 46, 25, 28, 19 | caovassd 5680 |
. . . . . . . . . 10
|
| 62 | 44, 25, 59 | caovcomd 5677 |
. . . . . . . . . 10
|
| 63 | 61, 62 | eqtrd 2113 |
. . . . . . . . 9
|
| 64 | 63 | breq1d 3795 |
. . . . . . . 8
|
| 65 | 60, 64 | bitr4d 189 |
. . . . . . 7
|
| 66 | 57, 65 | orbi12d 739 |
. . . . . 6
|
| 67 | 36, 54, 66 | 3imtr4d 201 |
. . . . 5
|
| 68 | ltsrprg 6924 |
. . . . . 6
| |
| 69 | 68 | 3adant3 958 |
. . . . 5
|
| 70 | ltsrprg 6924 |
. . . . . . 7
| |
| 71 | 70 | 3adant2 957 |
. . . . . 6
|
| 72 | ltsrprg 6924 |
. . . . . . . 8
| |
| 73 | 72 | ancoms 264 |
. . . . . . 7
|
| 74 | 73 | 3adant1 956 |
. . . . . 6
|
| 75 | 71, 74 | orbi12d 739 |
. . . . 5
|
| 76 | 67, 69, 75 | 3imtr4d 201 |
. . . 4
|
| 77 | 2, 6, 10, 14, 76 | 3ecoptocl 6218 |
. . 3
|
| 78 | 77 | rgen3 2448 |
. 2
|
| 79 | df-iso 4052 |
. 2
| |
| 80 | 1, 78, 79 | mpbir2an 883 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-iplp 6658 df-iltp 6660 df-enr 6903 df-nr 6904 df-ltr 6907 |
| This theorem is referenced by: 1ne0sr 6943 addgt0sr 6952 caucvgsrlemcl 6965 caucvgsrlemfv 6967 axpre-ltirr 7048 axpre-ltwlin 7049 axpre-lttrn 7050 |
| Copyright terms: Public domain | W3C validator |