ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo4 Unicode version

Theorem dffo4 5336
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo4  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dffo4
StepHypRef Expression
1 dffo2 5130 . . 3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
2 simpl 107 . . . 4  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  F : A --> B )
3 vex 2604 . . . . . . . . . 10  |-  y  e. 
_V
43elrn 4595 . . . . . . . . 9  |-  ( y  e.  ran  F  <->  E. x  x F y )
5 eleq2 2142 . . . . . . . . 9  |-  ( ran 
F  =  B  -> 
( y  e.  ran  F  <-> 
y  e.  B ) )
64, 5syl5bbr 192 . . . . . . . 8  |-  ( ran 
F  =  B  -> 
( E. x  x F y  <->  y  e.  B ) )
76biimpar 291 . . . . . . 7  |-  ( ( ran  F  =  B  /\  y  e.  B
)  ->  E. x  x F y )
87adantll 459 . . . . . 6  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  E. x  x F y )
9 ffn 5066 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F  Fn  A )
10 fnbr 5021 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
1110ex 113 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
129, 11syl 14 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( x F y  ->  x  e.  A
) )
1312ancrd 319 . . . . . . . . 9  |-  ( F : A --> B  -> 
( x F y  ->  ( x  e.  A  /\  x F y ) ) )
1413eximdv 1801 . . . . . . . 8  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x
( x  e.  A  /\  x F y ) ) )
15 df-rex 2354 . . . . . . . 8  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
1614, 15syl6ibr 160 . . . . . . 7  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x  e.  A  x F
y ) )
1716ad2antrr 471 . . . . . 6  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  ( E. x  x F
y  ->  E. x  e.  A  x F
y ) )
188, 17mpd 13 . . . . 5  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  E. x  e.  A  x F
y )
1918ralrimiva 2434 . . . 4  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  A. y  e.  B  E. x  e.  A  x F y )
202, 19jca 300 . . 3  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  ( F : A
--> B  /\  A. y  e.  B  E. x  e.  A  x F
y ) )
211, 20sylbi 119 . 2  |-  ( F : A -onto-> B  -> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
22 fnbrfvb 5235 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
2322biimprd 156 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( x F y  ->  ( F `  x )  =  y ) )
24 eqcom 2083 . . . . . . . 8  |-  ( ( F `  x )  =  y  <->  y  =  ( F `  x ) )
2523, 24syl6ib 159 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( x F y  ->  y  =  ( F `  x ) ) )
269, 25sylan 277 . . . . . 6  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( x F y  ->  y  =  ( F `  x ) ) )
2726reximdva 2463 . . . . 5  |-  ( F : A --> B  -> 
( E. x  e.  A  x F y  ->  E. x  e.  A  y  =  ( F `  x ) ) )
2827ralimdv 2430 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E. x  e.  A  x F y  ->  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
2928imdistani 433 . . 3  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  -> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
30 dffo3 5335 . . 3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
3129, 30sylibr 132 . 2  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  ->  F : A -onto-> B )
3221, 31impbii 124 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   A.wral 2348   E.wrex 2349   class class class wbr 3785   ran crn 4364    Fn wfn 4917   -->wf 4918   -onto->wfo 4920   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930
This theorem is referenced by:  dffo5  5337
  Copyright terms: Public domain W3C validator