| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfoprab4f | Unicode version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfoprab4f.x |
|
| dfoprab4f.y |
|
| dfoprab4f.1 |
|
| Ref | Expression |
|---|---|
| dfoprab4f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 |
. . . . 5
| |
| 2 | dfoprab4f.x |
. . . . . 6
| |
| 3 | nfs1v 1856 |
. . . . . 6
| |
| 4 | 2, 3 | nfbi 1521 |
. . . . 5
|
| 5 | 1, 4 | nfim 1504 |
. . . 4
|
| 6 | opeq1 3570 |
. . . . . 6
| |
| 7 | 6 | eqeq2d 2092 |
. . . . 5
|
| 8 | sbequ12 1694 |
. . . . . 6
| |
| 9 | 8 | bibi2d 230 |
. . . . 5
|
| 10 | 7, 9 | imbi12d 232 |
. . . 4
|
| 11 | nfv 1461 |
. . . . . 6
| |
| 12 | dfoprab4f.y |
. . . . . . 7
| |
| 13 | nfs1v 1856 |
. . . . . . 7
| |
| 14 | 12, 13 | nfbi 1521 |
. . . . . 6
|
| 15 | 11, 14 | nfim 1504 |
. . . . 5
|
| 16 | opeq2 3571 |
. . . . . . 7
| |
| 17 | 16 | eqeq2d 2092 |
. . . . . 6
|
| 18 | sbequ12 1694 |
. . . . . . 7
| |
| 19 | 18 | bibi2d 230 |
. . . . . 6
|
| 20 | 17, 19 | imbi12d 232 |
. . . . 5
|
| 21 | dfoprab4f.1 |
. . . . 5
| |
| 22 | 15, 20, 21 | chvar 1680 |
. . . 4
|
| 23 | 5, 10, 22 | chvar 1680 |
. . 3
|
| 24 | 23 | dfoprab4 5838 |
. 2
|
| 25 | nfv 1461 |
. . 3
| |
| 26 | nfv 1461 |
. . 3
| |
| 27 | nfv 1461 |
. . . 4
| |
| 28 | 27, 3 | nfan 1497 |
. . 3
|
| 29 | nfv 1461 |
. . . 4
| |
| 30 | 13 | nfsb 1863 |
. . . 4
|
| 31 | 29, 30 | nfan 1497 |
. . 3
|
| 32 | eleq1 2141 |
. . . . 5
| |
| 33 | eleq1 2141 |
. . . . 5
| |
| 34 | 32, 33 | bi2anan9 570 |
. . . 4
|
| 35 | 18, 8 | sylan9bbr 450 |
. . . 4
|
| 36 | 34, 35 | anbi12d 456 |
. . 3
|
| 37 | 25, 26, 28, 31, 36 | cbvoprab12 5598 |
. 2
|
| 38 | 24, 37 | eqtr4i 2104 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 df-fv 4930 df-oprab 5536 df-1st 5787 df-2nd 5788 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |