| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2141 |
. . . . . 6
| |
| 2 | 1 | anbi1d 452 |
. . . . 5
|
| 3 | sneq 3409 |
. . . . . . 7
| |
| 4 | preq1 3469 |
. . . . . . 7
| |
| 5 | 3, 4 | preq12d 3477 |
. . . . . 6
|
| 6 | 5 | eleq2d 2148 |
. . . . 5
|
| 7 | 2, 6 | anbi12d 456 |
. . . 4
|
| 8 | df-3an 921 |
. . . 4
| |
| 9 | df-3an 921 |
. . . 4
| |
| 10 | 7, 8, 9 | 3bitr4g 221 |
. . 3
|
| 11 | 10 | abbidv 2196 |
. 2
|
| 12 | df-op 3407 |
. 2
| |
| 13 | df-op 3407 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4g 2138 |
1
|
| Copyright terms: Public domain | W3C validator |