ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjpr2 Unicode version

Theorem disjpr2 3456
Description: The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
Assertion
Ref Expression
disjpr2  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { C ,  D } )  =  (/) )

Proof of Theorem disjpr2
StepHypRef Expression
1 df-pr 3405 . . . 4  |-  { C ,  D }  =  ( { C }  u.  { D } )
21a1i 9 . . 3  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  ->  { C ,  D }  =  ( { C }  u.  { D } ) )
32ineq2d 3167 . 2  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { C ,  D } )  =  ( { A ,  B }  i^i  ( { C }  u.  { D } ) ) )
4 indi 3211 . . 3  |-  ( { A ,  B }  i^i  ( { C }  u.  { D } ) )  =  ( ( { A ,  B }  i^i  { C }
)  u.  ( { A ,  B }  i^i  { D } ) )
5 df-pr 3405 . . . . . . . 8  |-  { A ,  B }  =  ( { A }  u.  { B } )
65ineq1i 3163 . . . . . . 7  |-  ( { A ,  B }  i^i  { C } )  =  ( ( { A }  u.  { B } )  i^i  { C } )
7 indir 3213 . . . . . . 7  |-  ( ( { A }  u.  { B } )  i^i 
{ C } )  =  ( ( { A }  i^i  { C } )  u.  ( { B }  i^i  { C } ) )
86, 7eqtri 2101 . . . . . 6  |-  ( { A ,  B }  i^i  { C } )  =  ( ( { A }  i^i  { C } )  u.  ( { B }  i^i  { C } ) )
9 disjsn2 3455 . . . . . . . . . 10  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
109adantr 270 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A }  i^i  { C } )  =  (/) )
1110adantr 270 . . . . . . . 8  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A }  i^i  { C } )  =  (/) )
12 disjsn2 3455 . . . . . . . . . 10  |-  ( B  =/=  C  ->  ( { B }  i^i  { C } )  =  (/) )
1312adantl 271 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { B }  i^i  { C } )  =  (/) )
1413adantr 270 . . . . . . . 8  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { B }  i^i  { C } )  =  (/) )
1511, 14jca 300 . . . . . . 7  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( ( { A }  i^i  { C }
)  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) )
16 un00 3290 . . . . . . 7  |-  ( ( ( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) 
<->  ( ( { A }  i^i  { C }
)  u.  ( { B }  i^i  { C } ) )  =  (/) )
1715, 16sylib 120 . . . . . 6  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( ( { A }  i^i  { C }
)  u.  ( { B }  i^i  { C } ) )  =  (/) )
188, 17syl5eq 2125 . . . . 5  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
195ineq1i 3163 . . . . . . 7  |-  ( { A ,  B }  i^i  { D } )  =  ( ( { A }  u.  { B } )  i^i  { D } )
20 indir 3213 . . . . . . 7  |-  ( ( { A }  u.  { B } )  i^i 
{ D } )  =  ( ( { A }  i^i  { D } )  u.  ( { B }  i^i  { D } ) )
2119, 20eqtri 2101 . . . . . 6  |-  ( { A ,  B }  i^i  { D } )  =  ( ( { A }  i^i  { D } )  u.  ( { B }  i^i  { D } ) )
22 disjsn2 3455 . . . . . . . . . 10  |-  ( A  =/=  D  ->  ( { A }  i^i  { D } )  =  (/) )
2322adantr 270 . . . . . . . . 9  |-  ( ( A  =/=  D  /\  B  =/=  D )  -> 
( { A }  i^i  { D } )  =  (/) )
2423adantl 271 . . . . . . . 8  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A }  i^i  { D } )  =  (/) )
25 disjsn2 3455 . . . . . . . . . 10  |-  ( B  =/=  D  ->  ( { B }  i^i  { D } )  =  (/) )
2625adantl 271 . . . . . . . . 9  |-  ( ( A  =/=  D  /\  B  =/=  D )  -> 
( { B }  i^i  { D } )  =  (/) )
2726adantl 271 . . . . . . . 8  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { B }  i^i  { D } )  =  (/) )
2824, 27jca 300 . . . . . . 7  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( ( { A }  i^i  { D }
)  =  (/)  /\  ( { B }  i^i  { D } )  =  (/) ) )
29 un00 3290 . . . . . . 7  |-  ( ( ( { A }  i^i  { D } )  =  (/)  /\  ( { B }  i^i  { D } )  =  (/) ) 
<->  ( ( { A }  i^i  { D }
)  u.  ( { B }  i^i  { D } ) )  =  (/) )
3028, 29sylib 120 . . . . . 6  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( ( { A }  i^i  { D }
)  u.  ( { B }  i^i  { D } ) )  =  (/) )
3121, 30syl5eq 2125 . . . . 5  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { D } )  =  (/) )
3218, 31uneq12d 3127 . . . 4  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( ( { A ,  B }  i^i  { C } )  u.  ( { A ,  B }  i^i  { D } ) )  =  ( (/)  u.  (/) ) )
33 un0 3278 . . . 4  |-  ( (/)  u.  (/) )  =  (/)
3432, 33syl6eq 2129 . . 3  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( ( { A ,  B }  i^i  { C } )  u.  ( { A ,  B }  i^i  { D } ) )  =  (/) )
354, 34syl5eq 2125 . 2  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  ( { C }  u.  { D } ) )  =  (/) )
363, 35eqtrd 2113 1  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { C ,  D } )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    =/= wne 2245    u. cun 2971    i^i cin 2972   (/)c0 3251   {csn 3398   {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator