ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnqt Unicode version

Theorem divalglemnqt 10320
Description: Lemma for divalg 10324. The  Q  <  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
Hypotheses
Ref Expression
divalglemnqt.d  |-  ( ph  ->  D  e.  NN )
divalglemnqt.r  |-  ( ph  ->  R  e.  ZZ )
divalglemnqt.s  |-  ( ph  ->  S  e.  ZZ )
divalglemnqt.q  |-  ( ph  ->  Q  e.  ZZ )
divalglemnqt.t  |-  ( ph  ->  T  e.  ZZ )
divalglemnqt.0s  |-  ( ph  ->  0  <_  S )
divalglemnqt.rd  |-  ( ph  ->  R  <  D )
divalglemnqt.eq  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
Assertion
Ref Expression
divalglemnqt  |-  ( ph  ->  -.  Q  <  T
)

Proof of Theorem divalglemnqt
StepHypRef Expression
1 divalglemnqt.rd . . 3  |-  ( ph  ->  R  <  D )
21adantr 270 . 2  |-  ( (
ph  /\  Q  <  T )  ->  R  <  D )
3 divalglemnqt.d . . . . 5  |-  ( ph  ->  D  e.  NN )
43adantr 270 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  NN )
54nnred 8052 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  RR )
6 divalglemnqt.r . . . . 5  |-  ( ph  ->  R  e.  ZZ )
76adantr 270 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  R  e.  ZZ )
87zred 8469 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  R  e.  RR )
9 divalglemnqt.s . . . . . . 7  |-  ( ph  ->  S  e.  ZZ )
109adantr 270 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  ZZ )
1110zred 8469 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  RR )
125, 11readdcld 7148 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  ( D  +  S )  e.  RR )
13 divalglemnqt.0s . . . . . 6  |-  ( ph  ->  0  <_  S )
1413adantr 270 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  0  <_  S )
155, 11addge01d 7633 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( 0  <_  S  <->  D  <_  ( D  +  S ) ) )
1614, 15mpbid 145 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  D  <_  ( D  +  S ) )
17 divalglemnqt.q . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  ZZ )
1817adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  ZZ )
1918zred 8469 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  RR )
2019recnd 7147 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  CC )
215recnd 7147 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  CC )
2220, 21mulcld 7139 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  x.  D )  e.  CC )
2311recnd 7147 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  CC )
2422, 21, 23addassd 7141 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  =  ( ( Q  x.  D )  +  ( D  +  S ) ) )
2519, 5remulcld 7149 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  x.  D )  e.  RR )
2625, 5readdcld 7148 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  D )  e.  RR )
27 divalglemnqt.t . . . . . . . . . . 11  |-  ( ph  ->  T  e.  ZZ )
2827adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  T  e.  ZZ )
2928zred 8469 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  T  e.  RR )
3029, 5remulcld 7149 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( T  x.  D )  e.  RR )
3120, 21adddirp1d 7145 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  +  1 )  x.  D )  =  ( ( Q  x.  D )  +  D
) )
32 peano2re 7244 . . . . . . . . . . 11  |-  ( Q  e.  RR  ->  ( Q  +  1 )  e.  RR )
3319, 32syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  +  1 )  e.  RR )
344nnnn0d 8341 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  NN0 )
3534nn0ge0d 8344 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  0  <_  D )
36 simpr 108 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  Q  <  T )
37 zltp1le 8405 . . . . . . . . . . . 12  |-  ( ( Q  e.  ZZ  /\  T  e.  ZZ )  ->  ( Q  <  T  <->  ( Q  +  1 )  <_  T ) )
3817, 28, 37syl2an2r 559 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  <  T  <->  ( Q  + 
1 )  <_  T
) )
3936, 38mpbid 145 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  +  1 )  <_  T )
4033, 29, 5, 35, 39lemul1ad 8017 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  +  1 )  x.  D )  <_ 
( T  x.  D
) )
4131, 40eqbrtrrd 3807 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  D )  <_  ( T  x.  D )
)
4226, 30, 11, 41leadd1dd 7659 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  <_ 
( ( T  x.  D )  +  S
) )
43 divalglemnqt.eq . . . . . . . 8  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
4443adantr 270 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  R )  =  ( ( T  x.  D
)  +  S ) )
4542, 44breqtrrd 3811 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  <_ 
( ( Q  x.  D )  +  R
) )
4624, 45eqbrtrrd 3807 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  ( D  +  S ) )  <_ 
( ( Q  x.  D )  +  R
) )
4712, 8, 25leadd2d 7640 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( ( D  +  S )  <_  R  <->  ( ( Q  x.  D )  +  ( D  +  S
) )  <_  (
( Q  x.  D
)  +  R ) ) )
4846, 47mpbird 165 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  ( D  +  S )  <_  R
)
495, 12, 8, 16, 48letrd 7233 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  D  <_  R )
505, 8, 49lensymd 7231 . 2  |-  ( (
ph  /\  Q  <  T )  ->  -.  R  <  D )
512, 50pm2.65da 619 1  |-  ( ph  ->  -.  Q  <  T
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154   NNcn 8039   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  divalglemeunn  10321  divalglemeuneg  10323
  Copyright terms: Public domain W3C validator