ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemeuneg Unicode version

Theorem divalglemeuneg 10323
Description: Lemma for divalg 10324. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
Assertion
Ref Expression
divalglemeuneg  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemeuneg
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 940 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  D  <  0 )
21lt0ne0d 7614 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  D  =/=  0 )
3 divalglemex 10322 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
42, 3syld3an3 1214 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
5 nfv 1461 . . . . . 6  |-  F/ q ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)
6 nfre1 2407 . . . . . . 7  |-  F/ q E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )
7 nfv 1461 . . . . . . 7  |-  F/ q  r  =  s
86, 7nfim 1504 . . . . . 6  |-  F/ q ( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s )
9 oveq1 5539 . . . . . . . . . . . 12  |-  ( q  =  t  ->  (
q  x.  D )  =  ( t  x.  D ) )
109oveq1d 5547 . . . . . . . . . . 11  |-  ( q  =  t  ->  (
( q  x.  D
)  +  s )  =  ( ( t  x.  D )  +  s ) )
1110eqeq2d 2092 . . . . . . . . . 10  |-  ( q  =  t  ->  ( N  =  ( (
q  x.  D )  +  s )  <->  N  =  ( ( t  x.  D )  +  s ) ) )
12113anbi3d 1249 . . . . . . . . 9  |-  ( q  =  t  ->  (
( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( t  x.  D )  +  s ) ) ) )
1312cbvrexv 2578 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )
14 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  q  <  t )
15 simp2 939 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  D  e.  ZZ )
1615znegcld 8471 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  -u D  e.  ZZ )
1715zred 8469 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  D  e.  RR )
1817lt0neg1d 7616 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  ( D  <  0  <->  0  <  -u D ) )
191, 18mpbid 145 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  0  <  -u D )
20 elnnz 8361 . . . . . . . . . . . . . . . . 17  |-  ( -u D  e.  NN  <->  ( -u D  e.  ZZ  /\  0  <  -u D ) )
2116, 19, 20sylanbrc 408 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  -u D  e.  NN )
2221ad5antr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -u D  e.  NN )
23 simplrr 502 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  s  e.  ZZ )
2423ad3antrrr 475 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  s  e.  ZZ )
25 simplrl 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  r  e.  ZZ )
2625ad3antrrr 475 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  r  e.  ZZ )
27 simplr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  t  e.  ZZ )
2827znegcld 8471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -u t  e.  ZZ )
29 simpr 108 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  q  e.  ZZ )
3029ad3antrrr 475 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  q  e.  ZZ )
3130znegcld 8471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -u q  e.  ZZ )
32 simpr1 944 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
0  <_  r )
3332ad2antrr 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  0  <_  r
)
34 simpr2 945 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  s  <  ( abs `  D ) )
35 simpll2 978 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  D  e.  ZZ )
3635ad3antrrr 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  e.  ZZ )
3736zred 8469 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  e.  RR )
38 0red 7120 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  0  e.  RR )
39 simpll3 979 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  D  <  0 )
4039ad3antrrr 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  <  0
)
4137, 38, 40ltled 7228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  <_  0
)
4237, 41absnidd 10046 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( abs `  D
)  =  -u D
)
4334, 42breqtrd 3809 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  s  <  -u D
)
44 simpr3 946 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  N  =  ( ( t  x.  D
)  +  s ) )
4527zcnd 8470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  t  e.  CC )
4636zcnd 8470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  e.  CC )
4745, 46mul2negd 7517 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( -u t  x.  -u D )  =  ( t  x.  D
) )
4847oveq1d 5547 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( ( -u t  x.  -u D )  +  s )  =  ( ( t  x.  D )  +  s ) )
4944, 48eqtr4d 2116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  N  =  ( ( -u t  x.  -u D )  +  s ) )
50 simpr3 946 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  ->  N  =  ( (
q  x.  D )  +  r ) )
5150ad2antrr 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  N  =  ( ( q  x.  D
)  +  r ) )
5230zcnd 8470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  q  e.  CC )
5352, 46mul2negd 7517 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( -u q  x.  -u D )  =  ( q  x.  D
) )
5453oveq1d 5547 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( ( -u q  x.  -u D )  +  r )  =  ( ( q  x.  D )  +  r ) )
5551, 54eqtr4d 2116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  N  =  ( ( -u q  x.  -u D )  +  r ) )
5649, 55eqtr3d 2115 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( ( -u t  x.  -u D )  +  s )  =  ( ( -u q  x.  -u D )  +  r ) )
5722, 24, 26, 28, 31, 33, 43, 56divalglemnqt 10320 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -.  -u t  <  -u q )
5830zred 8469 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  q  e.  RR )
5927zred 8469 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  t  e.  RR )
6058, 59ltnegd 7623 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( q  < 
t  <->  -u t  <  -u q
) )
6157, 60mtbird 630 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -.  q  <  t )
6261adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  -.  q  <  t )
6314, 62pm2.21dd 582 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  r  =  s )
6436adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  D  e.  ZZ )
6526adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  e.  ZZ )
6624adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  s  e.  ZZ )
6730adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  e.  ZZ )
6827adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  t  e.  ZZ )
69 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  =  t )
7051adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  N  =  ( ( q  x.  D )  +  r ) )
7144adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  N  =  ( ( t  x.  D )  +  s ) )
7270, 71eqtr3d 2115 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  ( (
q  x.  D )  +  r )  =  ( ( t  x.  D )  +  s ) )
7364, 65, 66, 67, 68, 69, 72divalglemqt 10319 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  =  s )
74 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  t  <  q )
75 simpr1 944 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  0  <_  s
)
76 simpr2 945 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
r  <  ( abs `  D ) )
7776ad2antrr 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  r  <  ( abs `  D ) )
7877, 42breqtrd 3809 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  r  <  -u D
)
7955, 49eqtr3d 2115 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( ( -u q  x.  -u D )  +  r )  =  ( ( -u t  x.  -u D )  +  s ) )
8022, 26, 24, 31, 28, 75, 78, 79divalglemnqt 10320 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -.  -u q  <  -u t )
8159, 58ltnegd 7623 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( t  < 
q  <->  -u q  <  -u t
) )
8280, 81mtbird 630 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -.  t  <  q )
8382adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  -.  t  <  q )
8474, 83pm2.21dd 582 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  r  =  s )
85 simplr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
q  e.  ZZ )
8685ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  q  e.  ZZ )
87 ztri3or 8394 . . . . . . . . . . . 12  |-  ( ( q  e.  ZZ  /\  t  e.  ZZ )  ->  ( q  <  t  \/  q  =  t  \/  t  <  q ) )
8886, 27, 87syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( q  < 
t  \/  q  =  t  \/  t  < 
q ) )
8963, 73, 84, 88mpjao3dan 1238 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  r  =  s )
9089ex 113 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  ->  ( ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
9190rexlimdva 2477 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
9213, 91syl5bi 150 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s ) )
9392exp31 356 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  ( q  e.  ZZ  ->  ( (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  ->  ( E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  -> 
r  =  s ) ) ) )
945, 8, 93rexlimd 2474 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  ->  ( E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  -> 
r  =  s ) ) )
9594impd 251 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  ( ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
9695ralrimivva 2443 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  A. r  e.  ZZ  A. s  e.  ZZ  ( ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
97 breq2 3789 . . . . . 6  |-  ( r  =  s  ->  (
0  <_  r  <->  0  <_  s ) )
98 breq1 3788 . . . . . 6  |-  ( r  =  s  ->  (
r  <  ( abs `  D )  <->  s  <  ( abs `  D ) ) )
99 oveq2 5540 . . . . . . 7  |-  ( r  =  s  ->  (
( q  x.  D
)  +  r )  =  ( ( q  x.  D )  +  s ) )
10099eqeq2d 2092 . . . . . 6  |-  ( r  =  s  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  s ) ) )
10197, 98, 1003anbi123d 1243 . . . . 5  |-  ( r  =  s  ->  (
( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) ) )
102101rexbidv 2369 . . . 4  |-  ( r  =  s  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) ) )
103102rmo4 2785 . . 3  |-  ( E* r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  A. r  e.  ZZ  A. s  e.  ZZ  ( ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
10496, 103sylibr 132 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  E* r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
105 reu5 2566 . 2  |-  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E* r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
1064, 104, 105sylanbrc 408 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ w3o 918    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   A.wral 2348   E.wrex 2349   E!wreu 2350   E*wrmo 2351   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   0cc0 6981    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154   -ucneg 7280   NNcn 8039   ZZcz 8351   abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by:  divalg  10324
  Copyright terms: Public domain W3C validator