ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdivdivap Unicode version

Theorem divdivdivap 7801
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divdivdivap  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  B )  / 
( C  /  D
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )

Proof of Theorem divdivdivap
StepHypRef Expression
1 simprrl 505 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D  e.  CC )
2 simprll 503 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C  e.  CC )
3 simprlr 504 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C #  0 )
4 divclap 7766 . . . . . . 7  |-  ( ( D  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( D  /  C )  e.  CC )
51, 2, 3, 4syl3anc 1169 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  /  C )  e.  CC )
6 simpll 495 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  A  e.  CC )
7 simplrl 501 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  B  e.  CC )
8 simplrr 502 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  B #  0 )
9 divclap 7766 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
106, 7, 8, 9syl3anc 1169 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  /  B )  e.  CC )
115, 10mulcomd 7140 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  /  C )  x.  ( A  /  B
) )  =  ( ( A  /  B
)  x.  ( D  /  C ) ) )
12 simplr 496 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  e.  CC  /\  B #  0 ) )
13 simprl 497 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  e.  CC  /\  C #  0 ) )
14 divmuldivap 7800 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( ( B  e.  CC  /\  B #  0 )  /\  ( C  e.  CC  /\  C #  0 ) ) )  ->  ( ( A  /  B )  x.  ( D  /  C
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
156, 1, 12, 13, 14syl22anc 1170 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  B )  x.  ( D  /  C
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
1611, 15eqtrd 2113 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  /  C )  x.  ( A  /  B
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
1716oveq2d 5548 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( ( D  /  C )  x.  ( A  /  B ) ) )  =  ( ( C  /  D )  x.  ( ( A  x.  D )  / 
( B  x.  C
) ) ) )
18 simprr 498 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  e.  CC  /\  D #  0 ) )
19 divmuldivap 7800 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  D  e.  CC )  /\  ( ( D  e.  CC  /\  D #  0 )  /\  ( C  e.  CC  /\  C #  0 ) ) )  ->  ( ( C  /  D )  x.  ( D  /  C
) )  =  ( ( C  x.  D
)  /  ( D  x.  C ) ) )
202, 1, 18, 13, 19syl22anc 1170 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( D  /  C
) )  =  ( ( C  x.  D
)  /  ( D  x.  C ) ) )
212, 1mulcomd 7140 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2221oveq1d 5547 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  D )  / 
( D  x.  C
) )  =  ( ( D  x.  C
)  /  ( D  x.  C ) ) )
231, 2mulcld 7139 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  x.  C )  e.  CC )
24 simprrr 506 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D #  0 )
251, 2, 24, 3mulap0d 7748 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  x.  C ) #  0 )
26 dividap 7789 . . . . . . . 8  |-  ( ( ( D  x.  C
)  e.  CC  /\  ( D  x.  C
) #  0 )  -> 
( ( D  x.  C )  /  ( D  x.  C )
)  =  1 )
2723, 25, 26syl2anc 403 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  x.  C )  / 
( D  x.  C
) )  =  1 )
2822, 27eqtrd 2113 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  D )  / 
( D  x.  C
) )  =  1 )
2920, 28eqtrd 2113 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( D  /  C
) )  =  1 )
3029oveq1d 5547 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( C  /  D )  x.  ( D  /  C ) )  x.  ( A  /  B
) )  =  ( 1  x.  ( A  /  B ) ) )
31 divclap 7766 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( C  /  D )  e.  CC )
322, 1, 24, 31syl3anc 1169 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  /  D )  e.  CC )
3332, 5, 10mulassd 7142 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( C  /  D )  x.  ( D  /  C ) )  x.  ( A  /  B
) )  =  ( ( C  /  D
)  x.  ( ( D  /  C )  x.  ( A  /  B ) ) ) )
3410mulid2d 7137 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( 1  x.  ( A  /  B
) )  =  ( A  /  B ) )
3530, 33, 343eqtr3d 2121 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( ( D  /  C )  x.  ( A  /  B ) ) )  =  ( A  /  B ) )
3617, 35eqtr3d 2115 . 2  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) )
376, 1mulcld 7139 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  e.  CC )
387, 2mulcld 7139 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  e.  CC )
39 mulap0 7744 . . . . 5  |-  ( ( ( B  e.  CC  /\  B #  0 )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B  x.  C ) #  0 )
4039ad2ant2lr 493 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C ) #  0 )
41 divclap 7766 . . . 4  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( B  x.  C
) #  0 )  -> 
( ( A  x.  D )  /  ( B  x.  C )
)  e.  CC )
4237, 38, 40, 41syl3anc 1169 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  / 
( B  x.  C
) )  e.  CC )
43 divap0 7772 . . . 4  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  /  D ) #  0 )
4443adantl 271 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  /  D ) #  0 )
45 divmulap 7763 . . 3  |-  ( ( ( A  /  B
)  e.  CC  /\  ( ( A  x.  D )  /  ( B  x.  C )
)  e.  CC  /\  ( ( C  /  D )  e.  CC  /\  ( C  /  D
) #  0 ) )  ->  ( ( ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  /  ( B  x.  C )
)  <->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) ) )
4610, 42, 32, 44, 45syl112anc 1173 . 2  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  /  ( B  x.  C )
)  <->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) ) )
4736, 46mpbird 165 1  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  B )  / 
( C  /  D
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    x. cmul 6986   # cap 7681    / cdiv 7760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761
This theorem is referenced by:  recdivap  7806  divcanap7  7809  divdivap1  7811  divdivap2  7812  divdivdivapi  7863  qreccl  8727
  Copyright terms: Public domain W3C validator