ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmuleqap Unicode version

Theorem divmuleqap 7805
Description: Cross-multiply in an equality of ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
divmuleqap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  =  ( B  /  D
)  <->  ( A  x.  D )  =  ( B  x.  C ) ) )

Proof of Theorem divmuleqap
StepHypRef Expression
1 divclap 7766 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( A  /  C )  e.  CC )
213expb 1139 . . . 4  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A  /  C )  e.  CC )
32ad2ant2r 492 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  /  C )  e.  CC )
4 divclap 7766 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( B  /  D )  e.  CC )
543expb 1139 . . . 4  |-  ( ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( B  /  D )  e.  CC )
65ad2ant2l 491 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  /  D )  e.  CC )
7 mulcl 7100 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 492 . . . . 5  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
9 mulap0 7744 . . . . 5  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
108, 9jca 300 . . . 4  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 ) )
1110adantl 271 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 ) )
12 mulcanap2 7756 . . 3  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  D
)  e.  CC  /\  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D
) #  0 ) )  ->  ( ( ( A  /  C )  x.  ( C  x.  D ) )  =  ( ( B  /  D )  x.  ( C  x.  D )
)  <->  ( A  /  C )  =  ( B  /  D ) ) )
133, 6, 11, 12syl3anc 1169 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  /  C )  x.  ( C  x.  D ) )  =  ( ( B  /  D )  x.  ( C  x.  D )
)  <->  ( A  /  C )  =  ( B  /  D ) ) )
14 simprll 503 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C  e.  CC )
15 simprrl 505 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D  e.  CC )
163, 14, 15mulassd 7142 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  /  C )  x.  C )  x.  D )  =  ( ( A  /  C
)  x.  ( C  x.  D ) ) )
17 divcanap1 7769 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  (
( A  /  C
)  x.  C )  =  A )
18173expb 1139 . . . . . 6  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( A  /  C )  x.  C )  =  A )
1918ad2ant2r 492 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  C )  =  A )
2019oveq1d 5547 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  /  C )  x.  C )  x.  D )  =  ( A  x.  D ) )
2116, 20eqtr3d 2115 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( C  x.  D
) )  =  ( A  x.  D ) )
2214, 15mulcomd 7140 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2322oveq2d 5548 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  /  D )  x.  ( C  x.  D
) )  =  ( ( B  /  D
)  x.  ( D  x.  C ) ) )
246, 15, 14mulassd 7142 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( B  /  D )  x.  D )  x.  C )  =  ( ( B  /  D
)  x.  ( D  x.  C ) ) )
25 divcanap1 7769 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  (
( B  /  D
)  x.  D )  =  B )
26253expb 1139 . . . . . 6  |-  ( ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( B  /  D )  x.  D )  =  B )
2726ad2ant2l 491 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  /  D )  x.  D )  =  B )
2827oveq1d 5547 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( B  /  D )  x.  D )  x.  C )  =  ( B  x.  C ) )
2923, 24, 283eqtr2d 2119 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  /  D )  x.  ( C  x.  D
) )  =  ( B  x.  C ) )
3021, 29eqeq12d 2095 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  /  C )  x.  ( C  x.  D ) )  =  ( ( B  /  D )  x.  ( C  x.  D )
)  <->  ( A  x.  D )  =  ( B  x.  C ) ) )
3113, 30bitr3d 188 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  =  ( B  /  D
)  <->  ( A  x.  D )  =  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979   0cc0 6981    x. cmul 6986   # cap 7681    / cdiv 7760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761
This theorem is referenced by:  qtri3or  9252
  Copyright terms: Public domain W3C validator