ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtri3or Unicode version

Theorem qtri3or 9252
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
Assertion
Ref Expression
qtri3or  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )

Proof of Theorem qtri3or
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 8707 . . . 4  |-  ( N  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  N  =  ( z  /  w ) )
21biimpi 118 . . 3  |-  ( N  e.  QQ  ->  E. z  e.  ZZ  E. w  e.  NN  N  =  ( z  /  w ) )
32adantl 271 . 2  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  E. z  e.  ZZ  E. w  e.  NN  N  =  ( z  /  w ) )
4 elq 8707 . . . . . . 7  |-  ( M  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  M  =  ( x  /  y ) )
54biimpi 118 . . . . . 6  |-  ( M  e.  QQ  ->  E. x  e.  ZZ  E. y  e.  NN  M  =  ( x  /  y ) )
65ad3antrrr 475 . . . . 5  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  E. x  e.  ZZ  E. y  e.  NN  M  =  ( x  /  y ) )
7 simplrl 501 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  x  e.  ZZ )
8 simplrr 502 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  w  e.  NN )
98ad2antrr 471 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w  e.  NN )
109nnzd 8468 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w  e.  ZZ )
117, 10zmulcld 8475 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  ZZ )
12 simplrl 501 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  z  e.  ZZ )
1312ad2antrr 471 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  z  e.  ZZ )
14 simplrr 502 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y  e.  NN )
1514nnzd 8468 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y  e.  ZZ )
1613, 15zmulcld 8475 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
z  x.  y )  e.  ZZ )
17 ztri3or 8394 . . . . . . . . 9  |-  ( ( ( x  x.  w
)  e.  ZZ  /\  ( z  x.  y
)  e.  ZZ )  ->  ( ( x  x.  w )  < 
( z  x.  y
)  \/  ( x  x.  w )  =  ( z  x.  y
)  \/  ( z  x.  y )  < 
( x  x.  w
) ) )
1811, 16, 17syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  x.  w
)  <  ( z  x.  y )  \/  (
x  x.  w )  =  ( z  x.  y )  \/  (
z  x.  y )  <  ( x  x.  w ) ) )
19 simpllr 500 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  N  =  ( z  /  w ) )
2019breq2d 3797 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  /  y
)  <  N  <->  ( x  /  y )  < 
( z  /  w
) ) )
21 breq1 3788 . . . . . . . . . . 11  |-  ( M  =  ( x  / 
y )  ->  ( M  <  N  <->  ( x  /  y )  < 
N ) )
2221adantl 271 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  ( M  <  N  <->  ( x  /  y )  < 
N ) )
237zred 8469 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  x  e.  RR )
249nnrpd 8772 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w  e.  RR+ )
2513zred 8469 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  z  e.  RR )
2614nnrpd 8772 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y  e.  RR+ )
2723, 24, 25, 26lt2mul2divd 8836 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  x.  w
)  <  ( z  x.  y )  <->  ( x  /  y )  < 
( z  /  w
) ) )
2820, 22, 273bitr4rd 219 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  x.  w
)  <  ( z  x.  y )  <->  M  <  N ) )
29 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  M  =  ( x  / 
y ) )
3029, 19eqeq12d 2095 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  ( M  =  N  <->  ( x  /  y )  =  ( z  /  w
) ) )
317zcnd 8470 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  x  e.  CC )
3213zcnd 8470 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  z  e.  CC )
3314nncnd 8053 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y  e.  CC )
3414nnap0d 8084 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y #  0 )
3533, 34jca 300 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
y  e.  CC  /\  y #  0 ) )
369nncnd 8053 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w  e.  CC )
379nnap0d 8084 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w #  0 )
3836, 37jca 300 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
w  e.  CC  /\  w #  0 ) )
39 divmuleqap 7805 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y #  0 )  /\  (
w  e.  CC  /\  w #  0 ) ) )  ->  ( ( x  /  y )  =  ( z  /  w
)  <->  ( x  x.  w )  =  ( z  x.  y ) ) )
4031, 32, 35, 38, 39syl22anc 1170 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  /  y
)  =  ( z  /  w )  <->  ( x  x.  w )  =  ( z  x.  y ) ) )
4130, 40bitr2d 187 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( z  x.  y )  <->  M  =  N ) )
4225, 26, 23, 24lt2mul2divd 8836 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( z  x.  y
)  <  ( x  x.  w )  <->  ( z  /  w )  <  (
x  /  y ) ) )
4319, 29breq12d 3798 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  ( N  <  M  <->  ( z  /  w )  <  (
x  /  y ) ) )
4442, 43bitr4d 189 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( z  x.  y
)  <  ( x  x.  w )  <->  N  <  M ) )
4528, 41, 443orbi123d 1242 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( ( x  x.  w )  <  (
z  x.  y )  \/  ( x  x.  w )  =  ( z  x.  y )  \/  ( z  x.  y )  <  (
x  x.  w ) )  <->  ( M  < 
N  \/  M  =  N  \/  N  < 
M ) ) )
4618, 45mpbid 145 . . . . . . 7  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
4746ex 113 . . . . . 6  |-  ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( M  =  ( x  / 
y )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) ) )
4847rexlimdvva 2484 . . . . 5  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  M  =  ( x  / 
y )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) ) )
496, 48mpd 13 . . . 4  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
5049ex 113 . . 3  |-  ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( N  =  ( z  /  w )  ->  ( M  < 
N  \/  M  =  N  \/  N  < 
M ) ) )
5150rexlimdvva 2484 . 2  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( E. z  e.  ZZ  E. w  e.  NN  N  =  ( z  /  w )  ->  ( M  < 
N  \/  M  =  N  \/  N  < 
M ) ) )
523, 51mpd 13 1  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ w3o 918    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   CCcc 6979   0cc0 6981    x. cmul 6986    < clt 7153   # cap 7681    / cdiv 7760   NNcn 8039   ZZcz 8351   QQcq 8704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735
This theorem is referenced by:  qletric  9253  qlelttric  9254  qltnle  9255  qdceq  9256
  Copyright terms: Public domain W3C validator