ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2ln Unicode version

Theorem dvds2ln 10228
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2ln  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( I  x.  M
)  +  ( J  x.  N ) ) ) )

Proof of Theorem dvds2ln
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 944 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  ZZ )
2 simpr2 945 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
31, 2jca 300 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  M  e.  ZZ ) )
4 simpr3 946 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
51, 4jca 300 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  N  e.  ZZ ) )
6 simpll 495 . . . . 5  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  I  e.  ZZ )
76, 2zmulcld 8475 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( I  x.  M
)  e.  ZZ )
8 simplr 496 . . . . 5  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  J  e.  ZZ )
98, 4zmulcld 8475 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( J  x.  N
)  e.  ZZ )
107, 9zaddcld 8473 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( I  x.  M )  +  ( J  x.  N ) )  e.  ZZ )
111, 10jca 300 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  ( ( I  x.  M )  +  ( J  x.  N ) )  e.  ZZ ) )
12 zmulcl 8404 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  I  e.  ZZ )  ->  ( x  x.  I
)  e.  ZZ )
13 zmulcl 8404 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  J  e.  ZZ )  ->  ( y  x.  J
)  e.  ZZ )
1412, 13anim12i 331 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  I  e.  ZZ )  /\  ( y  e.  ZZ  /\  J  e.  ZZ ) )  -> 
( ( x  x.  I )  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) )
1514an4s 552 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( I  e.  ZZ  /\  J  e.  ZZ ) )  -> 
( ( x  x.  I )  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) )
1615expcom 114 . . . . 5  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) ) )
1716adantr 270 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) ) )
1817imp 122 . . 3  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  e.  ZZ  /\  (
y  x.  J )  e.  ZZ ) )
19 zaddcl 8391 . . 3  |-  ( ( ( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ )  ->  ( ( x  x.  I )  +  ( y  x.  J
) )  e.  ZZ )
2018, 19syl 14 . 2  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  +  ( y  x.  J ) )  e.  ZZ )
21 zcn 8356 . . . . . . . 8  |-  ( ( x  x.  I )  e.  ZZ  ->  (
x  x.  I )  e.  CC )
22 zcn 8356 . . . . . . . 8  |-  ( ( y  x.  J )  e.  ZZ  ->  (
y  x.  J )  e.  CC )
2321, 22anim12i 331 . . . . . . 7  |-  ( ( ( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ )  ->  ( ( x  x.  I )  e.  CC  /\  ( y  x.  J )  e.  CC ) )
2418, 23syl 14 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  e.  CC  /\  (
y  x.  J )  e.  CC ) )
251zcnd 8470 . . . . . . 7  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  CC )
2625adantr 270 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  e.  CC )
27 adddir 7110 . . . . . . 7  |-  ( ( ( x  x.  I
)  e.  CC  /\  ( y  x.  J
)  e.  CC  /\  K  e.  CC )  ->  ( ( ( x  x.  I )  +  ( y  x.  J
) )  x.  K
)  =  ( ( ( x  x.  I
)  x.  K )  +  ( ( y  x.  J )  x.  K ) ) )
28273expa 1138 . . . . . 6  |-  ( ( ( ( x  x.  I )  e.  CC  /\  ( y  x.  J
)  e.  CC )  /\  K  e.  CC )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( ( x  x.  I )  x.  K
)  +  ( ( y  x.  J )  x.  K ) ) )
2924, 26, 28syl2anc 403 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  +  ( y  x.  J ) )  x.  K )  =  ( ( ( x  x.  I )  x.  K )  +  ( ( y  x.  J
)  x.  K ) ) )
30 zcn 8356 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
3130adantr 270 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  CC )
3231adantl 271 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  CC )
33 zcn 8356 . . . . . . . 8  |-  ( I  e.  ZZ  ->  I  e.  CC )
3433ad3antrrr 475 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  I  e.  CC )
3532, 34, 26mul32d 7261 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  x.  K )  =  ( ( x  x.  K )  x.  I
) )
36 zcn 8356 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
3736adantl 271 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  e.  CC )
3837adantl 271 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  y  e.  CC )
398zcnd 8470 . . . . . . . 8  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  J  e.  CC )
4039adantr 270 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  J  e.  CC )
4138, 40, 26mul32d 7261 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
y  x.  J )  x.  K )  =  ( ( y  x.  K )  x.  J
) )
4235, 41oveq12d 5550 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  x.  K )  +  ( ( y  x.  J )  x.  K ) )  =  ( ( ( x  x.  K )  x.  I )  +  ( ( y  x.  K
)  x.  J ) ) )
4332, 26mulcld 7139 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  K )  e.  CC )
4443, 34mulcomd 7140 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  K )  x.  I )  =  ( I  x.  (
x  x.  K ) ) )
4538, 26mulcld 7139 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( y  x.  K )  e.  CC )
4645, 40mulcomd 7140 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
y  x.  K )  x.  J )  =  ( J  x.  (
y  x.  K ) ) )
4744, 46oveq12d 5550 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  x.  I )  +  ( ( y  x.  K )  x.  J ) )  =  ( ( I  x.  ( x  x.  K
) )  +  ( J  x.  ( y  x.  K ) ) ) )
4829, 42, 473eqtrd 2117 . . . 4  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  ( x  x.  K
) )  +  ( J  x.  ( y  x.  K ) ) ) )
49 oveq2 5540 . . . . 5  |-  ( ( x  x.  K )  =  M  ->  (
I  x.  ( x  x.  K ) )  =  ( I  x.  M ) )
50 oveq2 5540 . . . . 5  |-  ( ( y  x.  K )  =  N  ->  ( J  x.  ( y  x.  K ) )  =  ( J  x.  N
) )
5149, 50oveqan12d 5551 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( I  x.  ( x  x.  K ) )  +  ( J  x.  (
y  x.  K ) ) )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) )
5248, 51sylan9eq 2133 . . 3  |-  ( ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( ( x  x.  K )  =  M  /\  (
y  x.  K )  =  N ) )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) )
5352ex 113 . 2  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) ) )
543, 5, 11, 20, 53dvds2lem 10207 1  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( I  x.  M
)  +  ( J  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979    + caddc 6984    x. cmul 6986   ZZcz 8351    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-dvds 10196
This theorem is referenced by:  gcdaddm  10375  dvdsgcd  10401
  Copyright terms: Public domain W3C validator