ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modmulconst Unicode version

Theorem modmulconst 10227
Description: Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
modmulconst  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( ( C  x.  A )  mod  ( C  x.  M
) )  =  ( ( C  x.  B
)  mod  ( C  x.  M ) ) ) )

Proof of Theorem modmulconst
StepHypRef Expression
1 nnz 8370 . . . . 5  |-  ( M  e.  NN  ->  M  e.  ZZ )
21adantl 271 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  M  e.  ZZ )
3 zsubcl 8392 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
433adant3 958 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  -  B )  e.  ZZ )
54adantr 270 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( A  -  B )  e.  ZZ )
6 nnz 8370 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  ZZ )
7 nnne0 8067 . . . . . . 7  |-  ( C  e.  NN  ->  C  =/=  0 )
86, 7jca 300 . . . . . 6  |-  ( C  e.  NN  ->  ( C  e.  ZZ  /\  C  =/=  0 ) )
983ad2ant3 961 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  e.  ZZ  /\  C  =/=  0 ) )
109adantr 270 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  e.  ZZ  /\  C  =/=  0 ) )
11 dvdscmulr 10224 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( A  -  B
)  e.  ZZ  /\  ( C  e.  ZZ  /\  C  =/=  0 ) )  ->  ( ( C  x.  M )  ||  ( C  x.  ( A  -  B )
)  <->  M  ||  ( A  -  B ) ) )
1211bicomd 139 . . . 4  |-  ( ( M  e.  ZZ  /\  ( A  -  B
)  e.  ZZ  /\  ( C  e.  ZZ  /\  C  =/=  0 ) )  ->  ( M  ||  ( A  -  B
)  <->  ( C  x.  M )  ||  ( C  x.  ( A  -  B ) ) ) )
132, 5, 10, 12syl3anc 1169 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( M  ||  ( A  -  B
)  <->  ( C  x.  M )  ||  ( C  x.  ( A  -  B ) ) ) )
14 zcn 8356 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
15 zcn 8356 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
16 nncn 8047 . . . . . . . 8  |-  ( C  e.  NN  ->  C  e.  CC )
1714, 15, 163anim123i 1123 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC ) )
18 3anrot 924 . . . . . . 7  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  <->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC ) )
1917, 18sylibr 132 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC ) )
20 subdi 7489 . . . . . 6  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( C  x.  ( A  -  B ) )  =  ( ( C  x.  A )  -  ( C  x.  B )
) )
2119, 20syl 14 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  x.  ( A  -  B ) )  =  ( ( C  x.  A )  -  ( C  x.  B )
) )
2221adantr 270 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  x.  ( A  -  B
) )  =  ( ( C  x.  A
)  -  ( C  x.  B ) ) )
2322breq2d 3797 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( C  x.  M )  ||  ( C  x.  ( A  -  B )
)  <->  ( C  x.  M )  ||  (
( C  x.  A
)  -  ( C  x.  B ) ) ) )
2413, 23bitrd 186 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( M  ||  ( A  -  B
)  <->  ( C  x.  M )  ||  (
( C  x.  A
)  -  ( C  x.  B ) ) ) )
25 simpr 108 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  M  e.  NN )
26 simp1 938 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  A  e.  ZZ )
2726adantr 270 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  A  e.  ZZ )
28 simp2 939 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  B  e.  ZZ )
2928adantr 270 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  B  e.  ZZ )
30 moddvds 10204 . . 3  |-  ( ( M  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  M  ||  ( A  -  B )
) )
3125, 27, 29, 30syl3anc 1169 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  M  ||  ( A  -  B ) ) )
32 simpl3 943 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  C  e.  NN )
3332, 25nnmulcld 8087 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  x.  M )  e.  NN )
3463ad2ant3 961 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  C  e.  ZZ )
3534, 26zmulcld 8475 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  x.  A )  e.  ZZ )
3635adantr 270 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  x.  A )  e.  ZZ )
3734, 28zmulcld 8475 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  x.  B )  e.  ZZ )
3837adantr 270 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  x.  B )  e.  ZZ )
39 moddvds 10204 . . 3  |-  ( ( ( C  x.  M
)  e.  NN  /\  ( C  x.  A
)  e.  ZZ  /\  ( C  x.  B
)  e.  ZZ )  ->  ( ( ( C  x.  A )  mod  ( C  x.  M ) )  =  ( ( C  x.  B )  mod  ( C  x.  M )
)  <->  ( C  x.  M )  ||  (
( C  x.  A
)  -  ( C  x.  B ) ) ) )
4033, 36, 38, 39syl3anc 1169 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( ( C  x.  A )  mod  ( C  x.  M ) )  =  ( ( C  x.  B )  mod  ( C  x.  M )
)  <->  ( C  x.  M )  ||  (
( C  x.  A
)  -  ( C  x.  B ) ) ) )
4124, 31, 403bitr4d 218 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( ( C  x.  A )  mod  ( C  x.  M
) )  =  ( ( C  x.  B
)  mod  ( C  x.  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785  (class class class)co 5532   CCcc 6979   0cc0 6981    x. cmul 6986    - cmin 7279   NNcn 8039   ZZcz 8351    mod cmo 9324    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325  df-dvds 10196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator