ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsabseq Unicode version

Theorem dvdsabseq 10247
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq  |-  ( ( M  ||  N  /\  N  ||  M )  -> 
( abs `  M
)  =  ( abs `  N ) )

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 10200 . . 3  |-  ( M 
||  N  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 simpr 108 . . . . . . 7  |-  ( ( M  ||  N  /\  N  ||  M )  ->  N  ||  M )
3 breq1 3788 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  ||  M  <->  0  ||  M ) )
4 0dvds 10215 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
54adantr 270 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  M  <->  M  =  0 ) )
6 zcn 8356 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  CC )
76abs00ad 9951 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  =  0  <->  M  =  0 ) )
87bicomd 139 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M  =  0  <->  ( abs `  M )  =  0 ) )
98adantr 270 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  <-> 
( abs `  M
)  =  0 ) )
105, 9bitrd 186 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  M  <->  ( abs `  M )  =  0 ) )
113, 10sylan9bb 449 . . . . . . . 8  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  M  <->  ( abs `  M
)  =  0 ) )
12 fveq2 5198 . . . . . . . . . . 11  |-  ( N  =  0  ->  ( abs `  N )  =  ( abs `  0
) )
13 abs0 9944 . . . . . . . . . . 11  |-  ( abs `  0 )  =  0
1412, 13syl6eq 2129 . . . . . . . . . 10  |-  ( N  =  0  ->  ( abs `  N )  =  0 )
1514adantr 270 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  N )  =  0 )
1615eqeq2d 2092 . . . . . . . 8  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( abs `  M )  =  ( abs `  N
)  <->  ( abs `  M
)  =  0 ) )
1711, 16bitr4d 189 . . . . . . 7  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  M  <->  ( abs `  M
)  =  ( abs `  N ) ) )
182, 17syl5ib 152 . . . . . 6  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( M  ||  N  /\  N  ||  M )  ->  ( abs `  M )  =  ( abs `  N
) ) )
1918expd 254 . . . . 5  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N ) ) ) )
2019expcom 114 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) ) )
21 simprl 497 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
22 simpr 108 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
2322adantl 271 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
24 neqne 2253 . . . . . . . 8  |-  ( -.  N  =  0  ->  N  =/=  0 )
2524adantr 270 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  =/=  0 )
26 dvdsleabs2 10246 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( M  ||  N  ->  ( abs `  M )  <_ 
( abs `  N
) ) )
2721, 23, 25, 26syl3anc 1169 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( abs `  M
)  <_  ( abs `  N ) ) )
28 simpr 108 . . . . . . . . . . . . 13  |-  ( ( N  ||  M  /\  M  ||  N )  ->  M  ||  N )
29 breq1 3788 . . . . . . . . . . . . . . 15  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
30 0dvds 10215 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
31 eqcom 2083 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs `  N )  =  0  <->  0  =  ( abs `  N ) )
32 zcn 8356 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  N  e.  CC )
3332abs00ad 9951 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  (
( abs `  N
)  =  0  <->  N  =  0 ) )
3431, 33syl5rbbr 193 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  0  =  ( abs `  N ) ) )
3530, 34bitrd 186 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  0  =  ( abs `  N ) ) )
3635adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  0  =  ( abs `  N
) ) )
3729, 36sylan9bb 449 . . . . . . . . . . . . . 14  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  <->  0  =  ( abs `  N ) ) )
38 fveq2 5198 . . . . . . . . . . . . . . . . 17  |-  ( M  =  0  ->  ( abs `  M )  =  ( abs `  0
) )
3938, 13syl6eq 2129 . . . . . . . . . . . . . . . 16  |-  ( M  =  0  ->  ( abs `  M )  =  0 )
4039adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  M )  =  0 )
4140eqeq1d 2089 . . . . . . . . . . . . . 14  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( abs `  M )  =  ( abs `  N
)  <->  0  =  ( abs `  N ) ) )
4237, 41bitr4d 189 . . . . . . . . . . . . 13  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  <->  ( abs `  M
)  =  ( abs `  N ) ) )
4328, 42syl5ib 152 . . . . . . . . . . . 12  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( N  ||  M  /\  M  ||  N )  ->  ( abs `  M )  =  ( abs `  N
) ) )
4443a1dd 47 . . . . . . . . . . 11  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( N  ||  M  /\  M  ||  N )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
4544expcomd 1370 . . . . . . . . . 10  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_ 
( abs `  N
)  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) )
4645expcom 114 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_  ( abs `  N )  -> 
( abs `  M
)  =  ( abs `  N ) ) ) ) ) )
4722adantl 271 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
48 simprl 497 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
49 neqne 2253 . . . . . . . . . . . . . 14  |-  ( -.  M  =  0  ->  M  =/=  0 )
5049adantr 270 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  =/=  0 )
51 dvdsleabs2 10246 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  ( N  ||  M  ->  ( abs `  N )  <_ 
( abs `  M
) ) )
5247, 48, 50, 51syl3anc 1169 . . . . . . . . . . . 12  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( N  ||  M  ->  ( abs `  N
)  <_  ( abs `  M ) ) )
53 eqcom 2083 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  =  ( abs `  N
)  <->  ( abs `  N
)  =  ( abs `  M ) )
5432abscld 10067 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
556abscld 10067 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  RR )
56 letri3 7192 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  N
)  e.  RR  /\  ( abs `  M )  e.  RR )  -> 
( ( abs `  N
)  =  ( abs `  M )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5754, 55, 56syl2anr 284 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  N
)  =  ( abs `  M )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5853, 57syl5bb 190 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  =  ( abs `  N )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5958biimprd 156 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  N )  <_  ( abs `  M )  /\  ( abs `  M )  <_  ( abs `  N
) )  ->  ( abs `  M )  =  ( abs `  N
) ) )
6059expd 254 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  N
)  <_  ( abs `  M )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6160adantl 271 . . . . . . . . . . . 12  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( abs `  N
)  <_  ( abs `  M )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6252, 61syld 44 . . . . . . . . . . 11  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6362a1d 22 . . . . . . . . . 10  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
6463expcom 114 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_ 
( abs `  N
)  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) ) )
65 0z 8362 . . . . . . . . . . . 12  |-  0  e.  ZZ
66 zdceq 8423 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
6765, 66mpan2 415 . . . . . . . . . . 11  |-  ( M  e.  ZZ  -> DECID  M  =  0
)
68 exmiddc 777 . . . . . . . . . . 11  |-  (DECID  M  =  0  ->  ( M  =  0  \/  -.  M  =  0 ) )
6967, 68syl 14 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  =  0  \/  -.  M  =  0
) )
7069adantr 270 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  \/  -.  M  =  0 ) )
7146, 64, 70mpjaod 670 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7271com34 82 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7372adantl 271 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7427, 73mpdd 40 . . . . 5  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) )
7574expcom 114 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  N  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) )
76 zdceq 8423 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
7765, 76mpan2 415 . . . . . 6  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
78 exmiddc 777 . . . . . 6  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
7977, 78syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  -.  N  =  0
) )
8079adantl 271 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  \/  -.  N  =  0 ) )
8120, 75, 80mpjaod 670 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) )
821, 81mpcom 36 . 2  |-  ( M 
||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) )
8382imp 122 1  |-  ( ( M  ||  N  /\  N  ||  M )  -> 
( abs `  M
)  =  ( abs `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   ` cfv 4922   RRcr 6980   0cc0 6981    <_ cle 7154   ZZcz 8351   abscabs 9883    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196
This theorem is referenced by:  dvdseq  10248
  Copyright terms: Public domain W3C validator