| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecovcom | Unicode version | ||
| Description: Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6237 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
| Ref | Expression |
|---|---|
| ecovcom.1 |
|
| ecovcom.2 |
|
| ecovcom.3 |
|
| ecovcom.4 |
|
| ecovcom.5 |
|
| Ref | Expression |
|---|---|
| ecovcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovcom.1 |
. 2
| |
| 2 | oveq1 5539 |
. . 3
| |
| 3 | oveq2 5540 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2095 |
. 2
|
| 5 | oveq2 5540 |
. . 3
| |
| 6 | oveq1 5539 |
. . 3
| |
| 7 | 5, 6 | eqeq12d 2095 |
. 2
|
| 8 | ecovcom.4 |
. . . 4
| |
| 9 | ecovcom.5 |
. . . 4
| |
| 10 | opeq12 3572 |
. . . . 5
| |
| 11 | 10 | eceq1d 6165 |
. . . 4
|
| 12 | 8, 9, 11 | mp2an 416 |
. . 3
|
| 13 | ecovcom.2 |
. . 3
| |
| 14 | ecovcom.3 |
. . . 4
| |
| 15 | 14 | ancoms 264 |
. . 3
|
| 16 | 12, 13, 15 | 3eqtr4a 2139 |
. 2
|
| 17 | 1, 4, 7, 16 | 2ecoptocl 6217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fv 4930 df-ov 5535 df-ec 6131 df-qs 6135 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |