![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecovcom | GIF version |
Description: Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6237 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
Ref | Expression |
---|---|
ecovcom.1 | ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) |
ecovcom.2 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) |
ecovcom.3 | ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
ecovcom.4 | ⊢ 𝐷 = 𝐻 |
ecovcom.5 | ⊢ 𝐺 = 𝐽 |
Ref | Expression |
---|---|
ecovcom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovcom.1 | . 2 ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) | |
2 | oveq1 5539 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = (𝐴 + [〈𝑧, 𝑤〉] ∼ )) | |
3 | oveq2 5540 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴)) | |
4 | 2, 3 | eqeq12d 2095 | . 2 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → (([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) ↔ (𝐴 + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴))) |
5 | oveq2 5540 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → (𝐴 + [〈𝑧, 𝑤〉] ∼ ) = (𝐴 + 𝐵)) | |
6 | oveq1 5539 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → ([〈𝑧, 𝑤〉] ∼ + 𝐴) = (𝐵 + 𝐴)) | |
7 | 5, 6 | eqeq12d 2095 | . 2 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → ((𝐴 + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
8 | ecovcom.4 | . . . 4 ⊢ 𝐷 = 𝐻 | |
9 | ecovcom.5 | . . . 4 ⊢ 𝐺 = 𝐽 | |
10 | opeq12 3572 | . . . . 5 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → 〈𝐷, 𝐺〉 = 〈𝐻, 𝐽〉) | |
11 | 10 | eceq1d 6165 | . . . 4 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → [〈𝐷, 𝐺〉] ∼ = [〈𝐻, 𝐽〉] ∼ ) |
12 | 8, 9, 11 | mp2an 416 | . . 3 ⊢ [〈𝐷, 𝐺〉] ∼ = [〈𝐻, 𝐽〉] ∼ |
13 | ecovcom.2 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) | |
14 | ecovcom.3 | . . . 4 ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) | |
15 | 14 | ancoms 264 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
16 | 12, 13, 15 | 3eqtr4a 2139 | . 2 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ )) |
17 | 1, 4, 7, 16 | 2ecoptocl 6217 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 〈cop 3401 × cxp 4361 (class class class)co 5532 [cec 6127 / cqs 6128 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fv 4930 df-ov 5535 df-ec 6131 df-qs 6135 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |