| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecovidi | Unicode version | ||
| Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| Ref | Expression |
|---|---|
| ecovidi.1 |
|
| ecovidi.2 |
|
| ecovidi.3 |
|
| ecovidi.4 |
|
| ecovidi.5 |
|
| ecovidi.6 |
|
| ecovidi.7 |
|
| ecovidi.8 |
|
| ecovidi.9 |
|
| ecovidi.10 |
|
| ecovidi.11 |
|
| Ref | Expression |
|---|---|
| ecovidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovidi.1 |
. 2
| |
| 2 | oveq1 5539 |
. . 3
| |
| 3 | oveq1 5539 |
. . . 4
| |
| 4 | oveq1 5539 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 5550 |
. . 3
|
| 6 | 2, 5 | eqeq12d 2095 |
. 2
|
| 7 | oveq1 5539 |
. . . 4
| |
| 8 | 7 | oveq2d 5548 |
. . 3
|
| 9 | oveq2 5540 |
. . . 4
| |
| 10 | 9 | oveq1d 5547 |
. . 3
|
| 11 | 8, 10 | eqeq12d 2095 |
. 2
|
| 12 | oveq2 5540 |
. . . 4
| |
| 13 | 12 | oveq2d 5548 |
. . 3
|
| 14 | oveq2 5540 |
. . . 4
| |
| 15 | 14 | oveq2d 5548 |
. . 3
|
| 16 | 13, 15 | eqeq12d 2095 |
. 2
|
| 17 | ecovidi.10 |
. . . 4
| |
| 18 | ecovidi.11 |
. . . 4
| |
| 19 | opeq12 3572 |
. . . . 5
| |
| 20 | 19 | eceq1d 6165 |
. . . 4
|
| 21 | 17, 18, 20 | syl2anc 403 |
. . 3
|
| 22 | ecovidi.2 |
. . . . . . 7
| |
| 23 | 22 | oveq2d 5548 |
. . . . . 6
|
| 24 | 23 | adantl 271 |
. . . . 5
|
| 25 | ecovidi.7 |
. . . . . 6
| |
| 26 | ecovidi.3 |
. . . . . 6
| |
| 27 | 25, 26 | sylan2 280 |
. . . . 5
|
| 28 | 24, 27 | eqtrd 2113 |
. . . 4
|
| 29 | 28 | 3impb 1134 |
. . 3
|
| 30 | ecovidi.4 |
. . . . . 6
| |
| 31 | ecovidi.5 |
. . . . . 6
| |
| 32 | 30, 31 | oveqan12d 5551 |
. . . . 5
|
| 33 | ecovidi.8 |
. . . . . 6
| |
| 34 | ecovidi.9 |
. . . . . 6
| |
| 35 | ecovidi.6 |
. . . . . 6
| |
| 36 | 33, 34, 35 | syl2an 283 |
. . . . 5
|
| 37 | 32, 36 | eqtrd 2113 |
. . . 4
|
| 38 | 37 | 3impdi 1224 |
. . 3
|
| 39 | 21, 29, 38 | 3eqtr4d 2123 |
. 2
|
| 40 | 1, 6, 11, 16, 39 | 3ecoptocl 6218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fv 4930 df-ov 5535 df-ec 6131 df-qs 6135 |
| This theorem is referenced by: distrnqg 6577 distrsrg 6936 axdistr 7040 |
| Copyright terms: Public domain | W3C validator |