ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzodifsumelfzo Unicode version

Theorem elfzodifsumelfzo 9210
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
Assertion
Ref Expression
elfzodifsumelfzo  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... P ) )  ->  ( I  e.  ( 0..^ ( N  -  M ) )  ->  ( I  +  M )  e.  ( 0..^ P ) ) )

Proof of Theorem elfzodifsumelfzo
StepHypRef Expression
1 elfz2nn0 9128 . . 3  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
2 elfz2nn0 9128 . . . . 5  |-  ( N  e.  ( 0 ... P )  <->  ( N  e.  NN0  /\  P  e. 
NN0  /\  N  <_  P ) )
3 elfzo0 9191 . . . . . . . 8  |-  ( I  e.  ( 0..^ ( N  -  M ) )  <->  ( I  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  I  <  ( N  -  M ) ) )
4 nn0z 8371 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  M  e.  ZZ )
5 nn0z 8371 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 znnsub 8402 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( N  -  M )  e.  NN ) )
74, 5, 6syl2an 283 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  <->  ( N  -  M )  e.  NN ) )
8 simpr 108 . . . . . . . . . . . . . . . 16  |-  ( ( I  <  ( N  -  M )  /\  I  e.  NN0 )  ->  I  e.  NN0 )
9 simpll 495 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  M  e.  NN0 )
10 nn0addcl 8323 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  NN0  /\  M  e.  NN0 )  -> 
( I  +  M
)  e.  NN0 )
118, 9, 10syl2anr 284 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  -> 
( I  +  M
)  e.  NN0 )
1211adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  ( P  e.  NN0  /\  N  <_  P )
)  ->  ( I  +  M )  e.  NN0 )
13 0red 7120 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  RR )
14 nn0re 8297 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  NN0  ->  M  e.  RR )
1514adantr 270 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
16 nn0re 8297 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN0  ->  N  e.  RR )
1716adantl 271 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
1813, 15, 173jca 1118 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  e.  RR  /\  M  e.  RR  /\  N  e.  RR )
)
1918adantr 270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  ( 0  e.  RR  /\  M  e.  RR  /\  N  e.  RR ) )
20 nn0ge0 8313 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  NN0  ->  0  <_  M )
2120adantr 270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  M )
2221anim1i 333 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  ( 0  <_  M  /\  M  <  N
) )
23 lelttr 7199 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  M  /\  M  <  N )  ->  0  <  N
) )
2419, 22, 23sylc 61 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  0  <  N
)
2524ex 113 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  ->  0  <  N ) )
26 0red 7120 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  RR )
2716adantl 271 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
28 nn0re 8297 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  NN0  ->  P  e.  RR )
2928adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  ->  P  e.  RR )
30 ltletr 7200 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  P  e.  RR )  ->  (
( 0  <  N  /\  N  <_  P )  ->  0  <  P
) )
3126, 27, 29, 30syl3anc 1169 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0  < 
N  /\  N  <_  P )  ->  0  <  P ) )
32 nn0z 8371 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  NN0  ->  P  e.  ZZ )
33 elnnz 8361 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P  e.  NN  <->  ( P  e.  ZZ  /\  0  < 
P ) )
3433simplbi2 377 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  ZZ  ->  (
0  <  P  ->  P  e.  NN ) )
3532, 34syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  NN0  ->  ( 0  <  P  ->  P  e.  NN ) )
3635adantr 270 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  P  ->  P  e.  NN ) )
3731, 36syld 44 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0  < 
N  /\  N  <_  P )  ->  P  e.  NN ) )
3837exp4b 359 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  NN0  ->  ( N  e.  NN0  ->  ( 0  <  N  ->  ( N  <_  P  ->  P  e.  NN ) ) ) )
3938com24 86 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  NN0  ->  ( N  <_  P  ->  (
0  <  N  ->  ( N  e.  NN0  ->  P  e.  NN ) ) ) )
4039imp 122 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  e.  NN0  /\  N  <_  P )  -> 
( 0  <  N  ->  ( N  e.  NN0  ->  P  e.  NN ) ) )
4140com13 79 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( 0  <  N  ->  (
( P  e.  NN0  /\  N  <_  P )  ->  P  e.  NN ) ) )
4241adantl 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  N  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  P  e.  NN ) ) )
4325, 42syld 44 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  P  e.  NN ) ) )
4443imp 122 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  ( ( P  e.  NN0  /\  N  <_  P )  ->  P  e.  NN ) )
4544adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  -> 
( ( P  e. 
NN0  /\  N  <_  P )  ->  P  e.  NN ) )
4645imp 122 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  ( P  e.  NN0  /\  N  <_  P )
)  ->  P  e.  NN )
47 nn0re 8297 . . . . . . . . . . . . . . . . . . . . 21  |-  ( I  e.  NN0  ->  I  e.  RR )
4847adantl 271 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  <  ( N  -  M )  /\  I  e.  NN0 )  ->  I  e.  RR )
4915adantr 270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  M  e.  RR )
50 readdcl 7099 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  e.  RR  /\  M  e.  RR )  ->  ( I  +  M
)  e.  RR )
5148, 49, 50syl2anr 284 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  -> 
( I  +  M
)  e.  RR )
5251adantr 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  -> 
( I  +  M
)  e.  RR )
5317adantr 270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  N  e.  RR )
5453adantr 270 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  ->  N  e.  RR )
5554adantr 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  ->  N  e.  RR )
5628adantl 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  ->  P  e.  RR )
5752, 55, 563jca 1118 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  -> 
( ( I  +  M )  e.  RR  /\  N  e.  RR  /\  P  e.  RR )
)
5857adantr 270 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  /\  ( I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  /\  N  <_  P
)  ->  ( (
I  +  M )  e.  RR  /\  N  e.  RR  /\  P  e.  RR ) )
5947adantl 271 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  I  e.  NN0 )  ->  I  e.  RR )
6015adantr 270 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  I  e.  NN0 )  ->  M  e.  RR )
6117adantr 270 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  I  e.  NN0 )  ->  N  e.  RR )
6259, 60, 61ltaddsubd 7645 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  I  e.  NN0 )  ->  ( ( I  +  M )  < 
N  <->  I  <  ( N  -  M ) ) )
6362exbiri 374 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( I  e.  NN0  ->  ( I  <  ( N  -  M )  ->  ( I  +  M
)  <  N )
) )
6463com23 77 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( I  <  ( N  -  M )  ->  ( I  e.  NN0  ->  ( I  +  M
)  <  N )
) )
6564impd 251 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( I  < 
( N  -  M
)  /\  I  e.  NN0 )  ->  ( I  +  M )  <  N
) )
6665adantr 270 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  ( ( I  <  ( N  -  M )  /\  I  e.  NN0 )  ->  (
I  +  M )  <  N ) )
6766imp 122 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  -> 
( I  +  M
)  <  N )
6867adantr 270 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  -> 
( I  +  M
)  <  N )
6968anim1i 333 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  /\  ( I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  /\  N  <_  P
)  ->  ( (
I  +  M )  <  N  /\  N  <_  P ) )
70 ltletr 7200 . . . . . . . . . . . . . . . 16  |-  ( ( ( I  +  M
)  e.  RR  /\  N  e.  RR  /\  P  e.  RR )  ->  (
( ( I  +  M )  <  N  /\  N  <_  P )  ->  ( I  +  M )  <  P
) )
7158, 69, 70sylc 61 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  /\  ( I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  /\  N  <_  P
)  ->  ( I  +  M )  <  P
)
7271anasss 391 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  ( P  e.  NN0  /\  N  <_  P )
)  ->  ( I  +  M )  <  P
)
73 elfzo0 9191 . . . . . . . . . . . . . 14  |-  ( ( I  +  M )  e.  ( 0..^ P )  <->  ( ( I  +  M )  e. 
NN0  /\  P  e.  NN  /\  ( I  +  M )  <  P
) )
7412, 46, 72, 73syl3anbrc 1122 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  ( P  e.  NN0  /\  N  <_  P )
)  ->  ( I  +  M )  e.  ( 0..^ P ) )
7574exp53 369 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  ->  ( I  <  ( N  -  M )  ->  ( I  e.  NN0  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) ) ) )
767, 75sylbird 168 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  -  M )  e.  NN  ->  ( I  <  ( N  -  M )  ->  ( I  e.  NN0  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) ) ) )
77763adant3 958 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  (
( N  -  M
)  e.  NN  ->  ( I  <  ( N  -  M )  -> 
( I  e.  NN0  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) ) ) )
7877com14 87 . . . . . . . . 9  |-  ( I  e.  NN0  ->  ( ( N  -  M )  e.  NN  ->  (
I  <  ( N  -  M )  ->  (
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  -> 
( ( P  e. 
NN0  /\  N  <_  P )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) ) ) )
79783imp 1132 . . . . . . . 8  |-  ( ( I  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  I  <  ( N  -  M ) )  -> 
( ( M  e. 
NN0  /\  N  e.  NN0 
/\  M  <_  N
)  ->  ( ( P  e.  NN0  /\  N  <_  P )  ->  (
I  +  M )  e.  ( 0..^ P ) ) ) )
803, 79sylbi 119 . . . . . . 7  |-  ( I  e.  ( 0..^ ( N  -  M ) )  ->  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  (
( P  e.  NN0  /\  N  <_  P )  ->  ( I  +  M
)  e.  ( 0..^ P ) ) ) )
8180com13 79 . . . . . 6  |-  ( ( P  e.  NN0  /\  N  <_  P )  -> 
( ( M  e. 
NN0  /\  N  e.  NN0 
/\  M  <_  N
)  ->  ( I  e.  ( 0..^ ( N  -  M ) )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) )
82813adant1 956 . . . . 5  |-  ( ( N  e.  NN0  /\  P  e.  NN0  /\  N  <_  P )  ->  (
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  -> 
( I  e.  ( 0..^ ( N  -  M ) )  -> 
( I  +  M
)  e.  ( 0..^ P ) ) ) )
832, 82sylbi 119 . . . 4  |-  ( N  e.  ( 0 ... P )  ->  (
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  -> 
( I  e.  ( 0..^ ( N  -  M ) )  -> 
( I  +  M
)  e.  ( 0..^ P ) ) ) )
8483com12 30 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  e.  ( 0 ... P )  -> 
( I  e.  ( 0..^ ( N  -  M ) )  -> 
( I  +  M
)  e.  ( 0..^ P ) ) ) )
851, 84sylbi 119 . 2  |-  ( M  e.  ( 0 ... N )  ->  ( N  e.  ( 0 ... P )  -> 
( I  e.  ( 0..^ ( N  -  M ) )  -> 
( I  +  M
)  e.  ( 0..^ P ) ) ) )
8685imp 122 1  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... P ) )  ->  ( I  e.  ( 0..^ ( N  -  M ) )  ->  ( I  +  M )  e.  ( 0..^ P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   0cc0 6981    + caddc 6984    < clt 7153    <_ cle 7154    - cmin 7279   NNcn 8039   NN0cn0 8288   ZZcz 8351   ...cfz 9029  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  elfzom1elp1fzo  9211
  Copyright terms: Public domain W3C validator