ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopabi Unicode version

Theorem elopabi 5841
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1  |-  ( x  =  ( 1st `  A
)  ->  ( ph  <->  ps ) )
elopabi.2  |-  ( y  =  ( 2nd `  A
)  ->  ( ps  <->  ch ) )
Assertion
Ref Expression
elopabi  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ch )
Distinct variable groups:    x, y, A    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem elopabi
StepHypRef Expression
1 relopab 4482 . . . 4  |-  Rel  { <. x ,  y >.  |  ph }
2 1st2nd 5827 . . . 4  |-  ( ( Rel  { <. x ,  y >.  |  ph }  /\  A  e.  { <. x ,  y >.  |  ph } )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
31, 2mpan 414 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
4 id 19 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  e.  { <. x ,  y >.  |  ph } )
53, 4eqeltrrd 2156 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  ph } )
6 1stexg 5814 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( 1st `  A
)  e.  _V )
7 2ndexg 5815 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( 2nd `  A
)  e.  _V )
8 elopabi.1 . . . 4  |-  ( x  =  ( 1st `  A
)  ->  ( ph  <->  ps ) )
9 elopabi.2 . . . 4  |-  ( y  =  ( 2nd `  A
)  ->  ( ps  <->  ch ) )
108, 9opelopabg 4023 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
)
116, 7, 10syl2anc 403 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
125, 11mpbid 145 1  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   <.cop 3401   {copab 3838   Rel wrel 4368   ` cfv 4922   1stc1st 5785   2ndc2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-1st 5787  df-2nd 5788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator