ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopabi GIF version

Theorem elopabi 5841
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1 (𝑥 = (1st𝐴) → (𝜑𝜓))
elopabi.2 (𝑦 = (2nd𝐴) → (𝜓𝜒))
Assertion
Ref Expression
elopabi (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem elopabi
StepHypRef Expression
1 relopab 4482 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 1st2nd 5827 . . . 4 ((Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
31, 2mpan 414 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
4 id 19 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
53, 4eqeltrrd 2156 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6 1stexg 5814 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (1st𝐴) ∈ V)
7 2ndexg 5815 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (2nd𝐴) ∈ V)
8 elopabi.1 . . . 4 (𝑥 = (1st𝐴) → (𝜑𝜓))
9 elopabi.2 . . . 4 (𝑦 = (2nd𝐴) → (𝜓𝜒))
108, 9opelopabg 4023 . . 3 (((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V) → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
116, 7, 10syl2anc 403 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
125, 11mpbid 145 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wcel 1433  Vcvv 2601  cop 3401  {copab 3838  Rel wrel 4368  cfv 4922  1st c1st 5785  2nd c2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-1st 5787  df-2nd 5788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator