| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elres | Unicode version | ||
| Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) |
| Ref | Expression |
|---|---|
| elres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4657 |
. . . . 5
| |
| 2 | elrel 4460 |
. . . . 5
| |
| 3 | 1, 2 | mpan 414 |
. . . 4
|
| 4 | eleq1 2141 |
. . . . . . . . 9
| |
| 5 | 4 | biimpd 142 |
. . . . . . . 8
|
| 6 | vex 2604 |
. . . . . . . . . . 11
| |
| 7 | 6 | opelres 4635 |
. . . . . . . . . 10
|
| 8 | 7 | biimpi 118 |
. . . . . . . . 9
|
| 9 | 8 | ancomd 263 |
. . . . . . . 8
|
| 10 | 5, 9 | syl6com 35 |
. . . . . . 7
|
| 11 | 10 | ancld 318 |
. . . . . 6
|
| 12 | an12 525 |
. . . . . 6
| |
| 13 | 11, 12 | syl6ib 159 |
. . . . 5
|
| 14 | 13 | 2eximdv 1803 |
. . . 4
|
| 15 | 3, 14 | mpd 13 |
. . 3
|
| 16 | rexcom4 2622 |
. . . 4
| |
| 17 | df-rex 2354 |
. . . . 5
| |
| 18 | 17 | exbii 1536 |
. . . 4
|
| 19 | excom 1594 |
. . . 4
| |
| 20 | 16, 18, 19 | 3bitri 204 |
. . 3
|
| 21 | 15, 20 | sylibr 132 |
. 2
|
| 22 | 7 | simplbi2com 1373 |
. . . . . 6
|
| 23 | 4 | biimprd 156 |
. . . . . 6
|
| 24 | 22, 23 | syl9 71 |
. . . . 5
|
| 25 | 24 | impd 251 |
. . . 4
|
| 26 | 25 | exlimdv 1740 |
. . 3
|
| 27 | 26 | rexlimiv 2471 |
. 2
|
| 28 | 21, 27 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 df-rel 4370 df-res 4375 |
| This theorem is referenced by: elsnres 4665 |
| Copyright terms: Public domain | W3C validator |