| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 |
|
| Ref | Expression |
|---|---|
| ancomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 |
. 2
| |
| 2 | ancom 262 |
. 2
| |
| 3 | 1, 2 | sylib 120 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: elres 4664 relbrcnvg 4724 fvelrnb 5242 relelec 6169 prcdnql 6674 1idpru 6781 gt0srpr 6925 dvdsdivcl 10250 nn0ehalf 10303 nn0oddm1d2 10309 nnoddm1d2 10310 coprmgcdb 10470 divgcdcoprm0 10483 divgcdcoprmex 10484 cncongr1 10485 |
| Copyright terms: Public domain | W3C validator |