ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2 Unicode version

Theorem eqfnfv2 5287
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
Distinct variable groups:    x, A    x, F    x, G
Allowed substitution hint:    B( x)

Proof of Theorem eqfnfv2
StepHypRef Expression
1 dmeq 4553 . . . 4  |-  ( F  =  G  ->  dom  F  =  dom  G )
2 fndm 5018 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
3 fndm 5018 . . . . 5  |-  ( G  Fn  B  ->  dom  G  =  B )
42, 3eqeqan12d 2096 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( dom  F  =  dom  G  <->  A  =  B ) )
51, 4syl5ib 152 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  ->  A  =  B ) )
65pm4.71rd 386 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  F  =  G ) ) )
7 fneq2 5008 . . . . . 6  |-  ( A  =  B  ->  ( G  Fn  A  <->  G  Fn  B ) )
87biimparc 293 . . . . 5  |-  ( ( G  Fn  B  /\  A  =  B )  ->  G  Fn  A )
9 eqfnfv 5286 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
108, 9sylan2 280 . . . 4  |-  ( ( F  Fn  A  /\  ( G  Fn  B  /\  A  =  B
) )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
1110anassrs 392 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  A  =  B )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
1211pm5.32da 439 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  =  B  /\  F  =  G )  <->  ( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
136, 12bitrd 186 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   A.wral 2348   dom cdm 4363    Fn wfn 4917   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by:  eqfnfv3  5288  eqfunfv  5291  eqfnov  5627  2ffzeq  9151
  Copyright terms: Public domain W3C validator