ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv3 Unicode version

Theorem eqfnfv3 5288
Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eqfnfv3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( B  C_  A  /\  A. x  e.  A  ( x  e.  B  /\  ( F `  x
)  =  ( G `
 x ) ) ) ) )
Distinct variable groups:    x, A    x, F    x, G    x, B

Proof of Theorem eqfnfv3
StepHypRef Expression
1 eqfnfv2 5287 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
2 eqss 3014 . . . . 5  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
3 ancom 262 . . . . 5  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( B  C_  A  /\  A  C_  B ) )
42, 3bitri 182 . . . 4  |-  ( A  =  B  <->  ( B  C_  A  /\  A  C_  B ) )
54anbi1i 445 . . 3  |-  ( ( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) )  <->  ( ( B  C_  A  /\  A  C_  B )  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
6 anass 393 . . . 4  |-  ( ( ( B  C_  A  /\  A  C_  B )  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) )  <->  ( B  C_  A  /\  ( A  C_  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
7 dfss3 2989 . . . . . . 7  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
87anbi1i 445 . . . . . 6  |-  ( ( A  C_  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) )  <->  ( A. x  e.  A  x  e.  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
9 r19.26 2485 . . . . . 6  |-  ( A. x  e.  A  (
x  e.  B  /\  ( F `  x )  =  ( G `  x ) )  <->  ( A. x  e.  A  x  e.  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
108, 9bitr4i 185 . . . . 5  |-  ( ( A  C_  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) )  <->  A. x  e.  A  ( x  e.  B  /\  ( F `  x )  =  ( G `  x ) ) )
1110anbi2i 444 . . . 4  |-  ( ( B  C_  A  /\  ( A  C_  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )  <-> 
( B  C_  A  /\  A. x  e.  A  ( x  e.  B  /\  ( F `  x
)  =  ( G `
 x ) ) ) )
126, 11bitri 182 . . 3  |-  ( ( ( B  C_  A  /\  A  C_  B )  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) )  <->  ( B  C_  A  /\  A. x  e.  A  ( x  e.  B  /\  ( F `
 x )  =  ( G `  x
) ) ) )
135, 12bitri 182 . 2  |-  ( ( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) )  <->  ( B  C_  A  /\  A. x  e.  A  ( x  e.  B  /\  ( F `  x )  =  ( G `  x ) ) ) )
141, 13syl6bb 194 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( B  C_  A  /\  A. x  e.  A  ( x  e.  B  /\  ( F `  x
)  =  ( G `
 x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348    C_ wss 2973    Fn wfn 4917   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator