| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2090 |
. . 3
| |
| 2 | 1 | anbi2d 451 |
. 2
|
| 3 | df-fn 4925 |
. 2
| |
| 4 | df-fn 4925 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-fn 4925 |
| This theorem is referenced by: fneq2d 5010 fneq2i 5014 feq2 5051 foeq2 5123 f1o00 5181 eqfnfv2 5287 tfr0 5960 tfrlemisucaccv 5962 tfrlemi1 5969 tfrlemi14d 5970 tfrexlem 5971 0fz1 9064 |
| Copyright terms: Public domain | W3C validator |