| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqinfti | Unicode version | ||
| Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqinfti.ti |
|
| Ref | Expression |
|---|---|
| eqinfti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 6398 |
. . 3
| |
| 2 | eqinfti.ti |
. . . . . 6
| |
| 3 | 2 | cnvti 6432 |
. . . . 5
|
| 4 | 3 | eqsupti 6409 |
. . . 4
|
| 5 | vex 2604 |
. . . . . . . . . . 11
| |
| 6 | brcnvg 4534 |
. . . . . . . . . . . 12
| |
| 7 | 6 | bicomd 139 |
. . . . . . . . . . 11
|
| 8 | 5, 7 | mpan2 415 |
. . . . . . . . . 10
|
| 9 | 8 | notbid 624 |
. . . . . . . . 9
|
| 10 | 9 | ralbidv 2368 |
. . . . . . . 8
|
| 11 | brcnvg 4534 |
. . . . . . . . . . . 12
| |
| 12 | 5, 11 | mpan 414 |
. . . . . . . . . . 11
|
| 13 | 12 | bicomd 139 |
. . . . . . . . . 10
|
| 14 | vex 2604 |
. . . . . . . . . . . . . 14
| |
| 15 | 5, 14 | brcnv 4536 |
. . . . . . . . . . . . 13
|
| 16 | 15 | a1i 9 |
. . . . . . . . . . . 12
|
| 17 | 16 | bicomd 139 |
. . . . . . . . . . 11
|
| 18 | 17 | rexbidv 2369 |
. . . . . . . . . 10
|
| 19 | 13, 18 | imbi12d 232 |
. . . . . . . . 9
|
| 20 | 19 | ralbidv 2368 |
. . . . . . . 8
|
| 21 | 10, 20 | anbi12d 456 |
. . . . . . 7
|
| 22 | 21 | pm5.32i 441 |
. . . . . 6
|
| 23 | 3anass 923 |
. . . . . 6
| |
| 24 | 3anass 923 |
. . . . . 6
| |
| 25 | 22, 23, 24 | 3bitr4i 210 |
. . . . 5
|
| 26 | 25 | biimpi 118 |
. . . 4
|
| 27 | 4, 26 | impel 274 |
. . 3
|
| 28 | 1, 27 | syl5eq 2125 |
. 2
|
| 29 | 28 | ex 113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-cnv 4371 df-iota 4887 df-riota 5488 df-sup 6397 df-inf 6398 |
| This theorem is referenced by: eqinftid 6434 |
| Copyright terms: Public domain | W3C validator |