ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqinfti GIF version

Theorem eqinfti 6433
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
eqinfti (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦,𝑧   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣,𝑦,𝑧   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)

Proof of Theorem eqinfti
StepHypRef Expression
1 df-inf 6398 . . 3 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 eqinfti.ti . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32cnvti 6432 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
43eqsupti 6409 . . . 4 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
5 vex 2604 . . . . . . . . . . 11 𝑦 ∈ V
6 brcnvg 4534 . . . . . . . . . . . 12 ((𝐶𝐴𝑦 ∈ V) → (𝐶𝑅𝑦𝑦𝑅𝐶))
76bicomd 139 . . . . . . . . . . 11 ((𝐶𝐴𝑦 ∈ V) → (𝑦𝑅𝐶𝐶𝑅𝑦))
85, 7mpan2 415 . . . . . . . . . 10 (𝐶𝐴 → (𝑦𝑅𝐶𝐶𝑅𝑦))
98notbid 624 . . . . . . . . 9 (𝐶𝐴 → (¬ 𝑦𝑅𝐶 ↔ ¬ 𝐶𝑅𝑦))
109ralbidv 2368 . . . . . . . 8 (𝐶𝐴 → (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ↔ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦))
11 brcnvg 4534 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ 𝐶𝐴) → (𝑦𝑅𝐶𝐶𝑅𝑦))
125, 11mpan 414 . . . . . . . . . . 11 (𝐶𝐴 → (𝑦𝑅𝐶𝐶𝑅𝑦))
1312bicomd 139 . . . . . . . . . 10 (𝐶𝐴 → (𝐶𝑅𝑦𝑦𝑅𝐶))
14 vex 2604 . . . . . . . . . . . . . 14 𝑧 ∈ V
155, 14brcnv 4536 . . . . . . . . . . . . 13 (𝑦𝑅𝑧𝑧𝑅𝑦)
1615a1i 9 . . . . . . . . . . . 12 (𝐶𝐴 → (𝑦𝑅𝑧𝑧𝑅𝑦))
1716bicomd 139 . . . . . . . . . . 11 (𝐶𝐴 → (𝑧𝑅𝑦𝑦𝑅𝑧))
1817rexbidv 2369 . . . . . . . . . 10 (𝐶𝐴 → (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧))
1913, 18imbi12d 232 . . . . . . . . 9 (𝐶𝐴 → ((𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2019ralbidv 2368 . . . . . . . 8 (𝐶𝐴 → (∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2110, 20anbi12d 456 . . . . . . 7 (𝐶𝐴 → ((∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2221pm5.32i 441 . . . . . 6 ((𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
23 3anass 923 . . . . . 6 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
24 3anass 923 . . . . . 6 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2522, 23, 243bitr4i 210 . . . . 5 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2625biimpi 118 . . . 4 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
274, 26impel 274 . . 3 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → sup(𝐵, 𝐴, 𝑅) = 𝐶)
281, 27syl5eq 2125 . 2 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → inf(𝐵, 𝐴, 𝑅) = 𝐶)
2928ex 113 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  wral 2348  wrex 2349  Vcvv 2601   class class class wbr 3785  ccnv 4362  supcsup 6395  infcinf 6396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-cnv 4371  df-iota 4887  df-riota 5488  df-sup 6397  df-inf 6398
This theorem is referenced by:  eqinftid  6434
  Copyright terms: Public domain W3C validator