| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moop2 | Unicode version | ||
| Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| moop2.1 |
|
| Ref | Expression |
|---|---|
| moop2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2 2099 |
. . . 4
| |
| 2 | moop2.1 |
. . . . . 6
| |
| 3 | vex 2604 |
. . . . . 6
| |
| 4 | 2, 3 | opth 3992 |
. . . . 5
|
| 5 | 4 | simprbi 269 |
. . . 4
|
| 6 | 1, 5 | syl 14 |
. . 3
|
| 7 | 6 | gen2 1379 |
. 2
|
| 8 | nfcsb1v 2938 |
. . . . 5
| |
| 9 | nfcv 2219 |
. . . . 5
| |
| 10 | 8, 9 | nfop 3586 |
. . . 4
|
| 11 | 10 | nfeq2 2230 |
. . 3
|
| 12 | csbeq1a 2916 |
. . . . 5
| |
| 13 | id 19 |
. . . . 5
| |
| 14 | 12, 13 | opeq12d 3578 |
. . . 4
|
| 15 | 14 | eqeq2d 2092 |
. . 3
|
| 16 | 11, 15 | mo4f 2001 |
. 2
|
| 17 | 7, 16 | mpbir 144 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |