ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ref Unicode version

Theorem enq0ref 6623
Description: The equivalence relation for non-negative fractions is reflexive. Lemma for enq0er 6625. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0ref  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )

Proof of Theorem enq0ref
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4379 . . . . . 6  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w ( f  = 
<. z ,  w >.  /\  ( z  e.  om  /\  w  e.  N. )
) )
2 elxpi 4379 . . . . . 6  |-  ( f  e.  ( om  X.  N. )  ->  E. v E. u ( f  = 
<. v ,  u >.  /\  ( v  e.  om  /\  u  e.  N. )
) )
3 ee4anv 1850 . . . . . 6  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  <->  ( E. z E. w ( f  =  <. z ,  w >.  /\  ( z  e. 
om  /\  w  e.  N. ) )  /\  E. v E. u ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) ) )
41, 2, 3sylanbrc 408 . . . . 5  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  ( z  e. 
om  /\  w  e.  N. ) )  /\  (
f  =  <. v ,  u >.  /\  (
v  e.  om  /\  u  e.  N. )
) ) )
5 eqtr2 2099 . . . . . . . . . . . 12  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  <. z ,  w >.  =  <. v ,  u >. )
6 vex 2604 . . . . . . . . . . . . 13  |-  z  e. 
_V
7 vex 2604 . . . . . . . . . . . . 13  |-  w  e. 
_V
86, 7opth 3992 . . . . . . . . . . . 12  |-  ( <.
z ,  w >.  = 
<. v ,  u >.  <->  (
z  =  v  /\  w  =  u )
)
95, 8sylib 120 . . . . . . . . . . 11  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( z  =  v  /\  w  =  u ) )
10 oveq1 5539 . . . . . . . . . . . 12  |-  ( z  =  v  ->  (
z  .o  u )  =  ( v  .o  u ) )
11 oveq2 5540 . . . . . . . . . . . . 13  |-  ( u  =  w  ->  (
v  .o  u )  =  ( v  .o  w ) )
1211equcoms 1634 . . . . . . . . . . . 12  |-  ( w  =  u  ->  (
v  .o  u )  =  ( v  .o  w ) )
1310, 12sylan9eq 2133 . . . . . . . . . . 11  |-  ( ( z  =  v  /\  w  =  u )  ->  ( z  .o  u
)  =  ( v  .o  w ) )
149, 13syl 14 . . . . . . . . . 10  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( z  .o  u )  =  ( v  .o  w ) )
1514ancli 316 . . . . . . . . 9  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( (
f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( v  .o  w
) ) )
1615ad2ant2r 492 . . . . . . . 8  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( v  .o  w ) ) )
17 pinn 6499 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  ->  w  e.  om )
18 nnmcom 6091 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  e.  om )  ->  ( v  .o  w
)  =  ( w  .o  v ) )
1917, 18sylan2 280 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  e.  N. )  ->  ( v  .o  w
)  =  ( w  .o  v ) )
2019eqeq2d 2092 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  e.  N. )  ->  ( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2120ancoms 264 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  v  e.  om )  ->  ( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2221ad2ant2lr 493 . . . . . . . . . 10  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( v  e.  om  /\  u  e.  N. )
)  ->  ( (
z  .o  u )  =  ( v  .o  w )  <->  ( z  .o  u )  =  ( w  .o  v ) ) )
2322ad2ant2l 491 . . . . . . . . 9  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2423anbi2d 451 . . . . . . . 8  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( v  .o  w ) )  <-> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) ) ) )
2516, 24mpbid 145 . . . . . . 7  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) ) )
26252eximi 1532 . . . . . 6  |-  ( E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  ->  E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) )
27262eximi 1532 . . . . 5  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) )
284, 27syl 14 . . . 4  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )
2928ancli 316 . . 3  |-  ( f  e.  ( om  X.  N. )  ->  ( f  e.  ( om  X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
30 vex 2604 . . . . 5  |-  f  e. 
_V
31 eleq1 2141 . . . . . . 7  |-  ( x  =  f  ->  (
x  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
3231anbi1d 452 . . . . . 6  |-  ( x  =  f  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
33 eqeq1 2087 . . . . . . . . 9  |-  ( x  =  f  ->  (
x  =  <. z ,  w >.  <->  f  =  <. z ,  w >. )
)
3433anbi1d 452 . . . . . . . 8  |-  ( x  =  f  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
3534anbi1d 452 . . . . . . 7  |-  ( x  =  f  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
36354exbidv 1791 . . . . . 6  |-  ( x  =  f  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
3732, 36anbi12d 456 . . . . 5  |-  ( x  =  f  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
38 eleq1 2141 . . . . . . 7  |-  ( y  =  f  ->  (
y  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
3938anbi2d 451 . . . . . 6  |-  ( y  =  f  ->  (
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) ) ) )
40 eqeq1 2087 . . . . . . . . 9  |-  ( y  =  f  ->  (
y  =  <. v ,  u >.  <->  f  =  <. v ,  u >. )
)
4140anbi2d 451 . . . . . . . 8  |-  ( y  =  f  ->  (
( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. ) ) )
4241anbi1d 452 . . . . . . 7  |-  ( y  =  f  ->  (
( ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
43424exbidv 1791 . . . . . 6  |-  ( y  =  f  ->  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
4439, 43anbi12d 456 . . . . 5  |-  ( y  =  f  ->  (
( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
45 df-enq0 6614 . . . . 5  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
4630, 30, 37, 44, 45brab 4027 . . . 4  |-  ( f ~Q0  f  <->  ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
47 anidm 388 . . . . 5  |-  ( ( f  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) )  <->  f  e.  ( om  X.  N. )
)
4847anbi1i 445 . . . 4  |-  ( ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( f  e.  ( om  X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
4946, 48bitri 182 . . 3  |-  ( f ~Q0  f  <->  ( f  e.  ( om 
X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
5029, 49sylibr 132 . 2  |-  ( f  e.  ( om  X.  N. )  ->  f ~Q0  f )
5149simplbi 268 . 2  |-  ( f ~Q0  f  ->  f  e.  ( om 
X.  N. ) )
5250, 51impbii 124 1  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   <.cop 3401   class class class wbr 3785   omcom 4331    X. cxp 4361  (class class class)co 5532    .o comu 6022   N.cnpi 6462   ~Q0 ceq0 6476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-ni 6494  df-enq0 6614
This theorem is referenced by:  enq0er  6625
  Copyright terms: Public domain W3C validator