| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun4f | Unicode version | ||
| Description: Definition of function like dffun4 4933 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.) |
| Ref | Expression |
|---|---|
| dffun4f.1 |
|
| dffun4f.2 |
|
| dffun4f.3 |
|
| Ref | Expression |
|---|---|
| dffun4f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun4f.1 |
. . 3
| |
| 2 | dffun4f.2 |
. . 3
| |
| 3 | 1, 2 | dffun6f 4935 |
. 2
|
| 4 | nfcv 2219 |
. . . . . . 7
| |
| 5 | nfcv 2219 |
. . . . . . 7
| |
| 6 | 4, 2, 5 | nfbr 3829 |
. . . . . 6
|
| 7 | breq2 3789 |
. . . . . 6
| |
| 8 | 6, 7 | mo4f 2001 |
. . . . 5
|
| 9 | nfv 1461 |
. . . . . . 7
| |
| 10 | nfcv 2219 |
. . . . . . . . . 10
| |
| 11 | dffun4f.3 |
. . . . . . . . . 10
| |
| 12 | nfcv 2219 |
. . . . . . . . . 10
| |
| 13 | 10, 11, 12 | nfbr 3829 |
. . . . . . . . 9
|
| 14 | nfcv 2219 |
. . . . . . . . . 10
| |
| 15 | 10, 11, 14 | nfbr 3829 |
. . . . . . . . 9
|
| 16 | 13, 15 | nfan 1497 |
. . . . . . . 8
|
| 17 | nfv 1461 |
. . . . . . . 8
| |
| 18 | 16, 17 | nfim 1504 |
. . . . . . 7
|
| 19 | breq2 3789 |
. . . . . . . . 9
| |
| 20 | 19 | anbi2d 451 |
. . . . . . . 8
|
| 21 | equequ2 1639 |
. . . . . . . 8
| |
| 22 | 20, 21 | imbi12d 232 |
. . . . . . 7
|
| 23 | 9, 18, 22 | cbval 1677 |
. . . . . 6
|
| 24 | 23 | albii 1399 |
. . . . 5
|
| 25 | 8, 24 | bitr4i 185 |
. . . 4
|
| 26 | 25 | albii 1399 |
. . 3
|
| 27 | 26 | anbi2i 444 |
. 2
|
| 28 | df-br 3786 |
. . . . . . 7
| |
| 29 | df-br 3786 |
. . . . . . 7
| |
| 30 | 28, 29 | anbi12i 447 |
. . . . . 6
|
| 31 | 30 | imbi1i 236 |
. . . . 5
|
| 32 | 31 | 2albii 1400 |
. . . 4
|
| 33 | 32 | albii 1399 |
. . 3
|
| 34 | 33 | anbi2i 444 |
. 2
|
| 35 | 3, 27, 34 | 3bitri 204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-cnv 4371 df-co 4372 df-fun 4924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |