| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotaval | Unicode version | ||
| Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotaval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 4888 |
. 2
| |
| 2 | vex 2604 |
. . . . . . 7
| |
| 3 | sbeqalb 2870 |
. . . . . . . 8
| |
| 4 | equcomi 1632 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl6 33 |
. . . . . . 7
|
| 6 | 2, 5 | ax-mp 7 |
. . . . . 6
|
| 7 | 6 | ex 113 |
. . . . 5
|
| 8 | equequ2 1639 |
. . . . . . . . . 10
| |
| 9 | 8 | equcoms 1634 |
. . . . . . . . 9
|
| 10 | 9 | bibi2d 230 |
. . . . . . . 8
|
| 11 | 10 | biimpd 142 |
. . . . . . 7
|
| 12 | 11 | alimdv 1800 |
. . . . . 6
|
| 13 | 12 | com12 30 |
. . . . 5
|
| 14 | 7, 13 | impbid 127 |
. . . 4
|
| 15 | 14 | alrimiv 1795 |
. . 3
|
| 16 | uniabio 4897 |
. . 3
| |
| 17 | 15, 16 | syl 14 |
. 2
|
| 18 | 1, 17 | syl5eq 2125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-iota 4887 |
| This theorem is referenced by: iotauni 4899 iota1 4901 euiotaex 4903 iota4 4905 iota5 4907 |
| Copyright terms: Public domain | W3C validator |