| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvinop | Unicode version | ||
| Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| eqvinop.1 |
|
| eqvinop.2 |
|
| Ref | Expression |
|---|---|
| eqvinop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvinop.1 |
. . . . . . . 8
| |
| 2 | eqvinop.2 |
. . . . . . . 8
| |
| 3 | 1, 2 | opth2 3995 |
. . . . . . 7
|
| 4 | 3 | anbi2i 444 |
. . . . . 6
|
| 5 | ancom 262 |
. . . . . 6
| |
| 6 | anass 393 |
. . . . . 6
| |
| 7 | 4, 5, 6 | 3bitri 204 |
. . . . 5
|
| 8 | 7 | exbii 1536 |
. . . 4
|
| 9 | 19.42v 1827 |
. . . 4
| |
| 10 | opeq2 3571 |
. . . . . . 7
| |
| 11 | 10 | eqeq2d 2092 |
. . . . . 6
|
| 12 | 2, 11 | ceqsexv 2638 |
. . . . 5
|
| 13 | 12 | anbi2i 444 |
. . . 4
|
| 14 | 8, 9, 13 | 3bitri 204 |
. . 3
|
| 15 | 14 | exbii 1536 |
. 2
|
| 16 | opeq1 3570 |
. . . 4
| |
| 17 | 16 | eqeq2d 2092 |
. . 3
|
| 18 | 1, 17 | ceqsexv 2638 |
. 2
|
| 19 | 15, 18 | bitr2i 183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 |
| This theorem is referenced by: copsexg 3999 ralxpf 4500 rexxpf 4501 oprabid 5557 |
| Copyright terms: Public domain | W3C validator |