ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfun Unicode version

Theorem qliftfun 6211
Description: The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
qliftfun.4  |-  ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
qliftfun  |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B ) ) )
Distinct variable groups:    y, A    x, B    x, y, ph    x, R, y    y, F    x, X, y    x, Y, y
Allowed substitution hints:    A( x)    B( y)    F( x)

Proof of Theorem qliftfun
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6207 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
6 eceq1 6164 . . 3  |-  ( x  =  y  ->  [ x ] R  =  [
y ] R )
7 qliftfun.4 . . 3  |-  ( x  =  y  ->  A  =  B )
81, 5, 2, 6, 7fliftfun 5456 . 2  |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
93adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  x R
y )  ->  R  Er  X )
10 simpr 108 . . . . . . . . . . 11  |-  ( (
ph  /\  x R
y )  ->  x R y )
119, 10ercl 6140 . . . . . . . . . 10  |-  ( (
ph  /\  x R
y )  ->  x  e.  X )
129, 10ercl2 6142 . . . . . . . . . 10  |-  ( (
ph  /\  x R
y )  ->  y  e.  X )
1311, 12jca 300 . . . . . . . . 9  |-  ( (
ph  /\  x R
y )  ->  (
x  e.  X  /\  y  e.  X )
)
1413ex 113 . . . . . . . 8  |-  ( ph  ->  ( x R y  ->  ( x  e.  X  /\  y  e.  X ) ) )
1514pm4.71rd 386 . . . . . . 7  |-  ( ph  ->  ( x R y  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  x R y ) ) )
163adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  Er  X )
17 simprl 497 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
1816, 17erth 6173 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x R y  <->  [ x ] R  =  [ y ] R
) )
1918pm5.32da 439 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  X  /\  y  e.  X )  /\  x R y )  <->  ( (
x  e.  X  /\  y  e.  X )  /\  [ x ] R  =  [ y ] R
) ) )
2015, 19bitrd 186 . . . . . 6  |-  ( ph  ->  ( x R y  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  [
x ] R  =  [ y ] R
) ) )
2120imbi1d 229 . . . . 5  |-  ( ph  ->  ( ( x R y  ->  A  =  B )  <->  ( (
( x  e.  X  /\  y  e.  X
)  /\  [ x ] R  =  [
y ] R )  ->  A  =  B ) ) )
22 impexp 259 . . . . 5  |-  ( ( ( ( x  e.  X  /\  y  e.  X )  /\  [
x ] R  =  [ y ] R
)  ->  A  =  B )  <->  ( (
x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) )
2321, 22syl6bb 194 . . . 4  |-  ( ph  ->  ( ( x R y  ->  A  =  B )  <->  ( (
x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) ) )
24232albidv 1788 . . 3  |-  ( ph  ->  ( A. x A. y ( x R y  ->  A  =  B )  <->  A. x A. y ( ( x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) ) )
25 r2al 2385 . . 3  |-  ( A. x  e.  X  A. y  e.  X  ( [ x ] R  =  [ y ] R  ->  A  =  B )  <->  A. x A. y ( ( x  e.  X  /\  y  e.  X
)  ->  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
2624, 25syl6bbr 196 . 2  |-  ( ph  ->  ( A. x A. y ( x R y  ->  A  =  B )  <->  A. x  e.  X  A. y  e.  X  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
278, 26bitr4d 189 1  |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   A.wral 2348   _Vcvv 2601   <.cop 3401   class class class wbr 3785    |-> cmpt 3839   ran crn 4364   Fun wfun 4916    Er wer 6126   [cec 6127   /.cqs 6128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-er 6129  df-ec 6131  df-qs 6135
This theorem is referenced by:  qliftfund  6212  qliftfuns  6213
  Copyright terms: Public domain W3C validator