ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expadd Unicode version

Theorem expadd 9518
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )

Proof of Theorem expadd
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . . . . . 7  |-  ( j  =  0  ->  ( M  +  j )  =  ( M  + 
0 ) )
21oveq2d 5548 . . . . . 6  |-  ( j  =  0  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  0 ) ) )
3 oveq2 5540 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
43oveq2d 5548 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) )
52, 4eqeq12d 2095 . . . . 5  |-  ( j  =  0  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) )
65imbi2d 228 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) ) )
7 oveq2 5540 . . . . . . 7  |-  ( j  =  k  ->  ( M  +  j )  =  ( M  +  k ) )
87oveq2d 5548 . . . . . 6  |-  ( j  =  k  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  k )
) )
9 oveq2 5540 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
109oveq2d 5548 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ k
) ) )
118, 10eqeq12d 2095 . . . . 5  |-  ( j  =  k  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) )
1211imbi2d 228 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) ) )
13 oveq2 5540 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M  +  j )  =  ( M  +  ( k  +  1 ) ) )
1413oveq2d 5548 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
15 oveq2 5540 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1615oveq2d 5548 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) ) )
1714, 16eqeq12d 2095 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) )
1817imbi2d 228 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
19 oveq2 5540 . . . . . . 7  |-  ( j  =  N  ->  ( M  +  j )  =  ( M  +  N ) )
2019oveq2d 5548 . . . . . 6  |-  ( j  =  N  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  N )
) )
21 oveq2 5540 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
2221oveq2d 5548 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ N
) ) )
2320, 22eqeq12d 2095 . . . . 5  |-  ( j  =  N  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
2423imbi2d 228 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
25 nn0cn 8298 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  CC )
2625addid1d 7257 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( M  +  0 )  =  M )
2726adantl 271 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( M  +  0 )  =  M )
2827oveq2d 5548 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( A ^ M ) )
29 expcl 9494 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
3029mulid1d 7136 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  1 )  =  ( A ^ M ) )
3128, 30eqtr4d 2116 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  1 ) )
32 exp0 9480 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3332adantr 270 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
3433oveq2d 5548 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  ( A ^ 0 ) )  =  ( ( A ^ M )  x.  1 ) )
3531, 34eqtr4d 2116 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  ( A ^
0 ) ) )
36 oveq1 5539 . . . . . . 7  |-  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k
) )  ->  (
( A ^ ( M  +  k )
)  x.  A )  =  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A ) )
37 nn0cn 8298 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
38 ax-1cn 7069 . . . . . . . . . . . . 13  |-  1  e.  CC
39 addass 7103 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4038, 39mp3an3 1257 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4125, 37, 40syl2an 283 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4241adantll 459 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4342oveq2d 5548 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
44 simpll 495 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  A  e.  CC )
45 nn0addcl 8323 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  +  k )  e.  NN0 )
4645adantll 459 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  +  k )  e.  NN0 )
47 expp1 9483 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  +  k
)  e.  NN0 )  ->  ( A ^ (
( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k ) )  x.  A ) )
4844, 46, 47syl2anc 403 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
4943, 48eqtr3d 2115 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
50 expp1 9483 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5150adantlr 460 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5251oveq2d 5548 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5329adantr 270 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^ M )  e.  CC )
54 expcl 9494 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
5554adantlr 460 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  CC )
5653, 55, 44mulassd 7142 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5752, 56eqtr4d 2116 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( ( A ^ M )  x.  ( A ^ k ) )  x.  A ) )
5849, 57eqeq12d 2095 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) )  <-> 
( ( A ^
( M  +  k ) )  x.  A
)  =  ( ( ( A ^ M
)  x.  ( A ^ k ) )  x.  A ) ) )
5936, 58syl5ibr 154 . . . . . 6  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) )
6059expcom 114 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^
( M  +  k ) )  =  ( ( A ^ M
)  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
6160a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k )
)  =  ( ( A ^ M )  x.  ( A ^
k ) ) )  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
626, 12, 18, 24, 35, 61nn0ind 8461 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
6362expdcom 1371 . 2  |-  ( A  e.  CC  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
64633imp 1132 1  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986   NN0cn0 8288   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  expaddzaplem  9519  expaddzap  9520  expmul  9521  i4  9577  expaddd  9607
  Copyright terms: Public domain W3C validator